Microtechnologies for inner ear drug delivery.

Curr Opin Otolaryngol Head Neck Surg

Microsystems Engineering, Rochester Institute of Technology, Rochester, New York, USA.

Published: October 2020

Purpose Of Review: Treatment of auditory dysfunction is dependent on inner ear drug delivery, with microtechnologies playing an increasingly important role in cochlear access and pharmacokinetic profile control. This review examines recent developments in the field for clinical and animal research environments.

Recent Findings: Micropump technologies are being developed for dynamic control of flow rates with refillable reservoirs enabling timed delivery of multiple agents for protection or regeneration therapies. These micropumps can be combined with cochlear implants with integral catheters or used independently with cochleostomy or round window membrane (RWM) delivery modalities for therapy development in animal models. Sustained release of steroids with coated cochlear implants remains an active research area with first-time-in-human demonstration of reduced electrode impedances. Advanced coatings containing neurotrophin producing cells have enhanced spiral ganglion neuron survival in animal models, and have proven safe in a human study. Microneedles have emerged for controlled microperforation of the RWM for significant enhancement in permeability, combinable with emerging matrix formulations that optimize biological interaction and drug release kinetics.

Summary: Microsystem technologies are providing enhanced and more controlled access to the inner ear for advanced drug delivery approaches, alone and in conjunction with cochlear implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645730PMC
http://dx.doi.org/10.1097/MOO.0000000000000648DOI Listing

Publication Analysis

Top Keywords

inner ear
12
drug delivery
12
cochlear implants
12
ear drug
8
animal models
8
delivery
5
microtechnologies inner
4
drug
4
delivery purpose
4
purpose review
4

Similar Publications

Novel therapeutic delivery systems and delivery methods to the inner ear are necessary to treat hearing loss and inner ear disorders. However, numerous barriers exist to therapeutic delivery into the bone-encased and immune-privileged environment of the inner ear and cochlea, which makes treating inner ear disorders challenging. Nanoparticles (NPs) are a type of therapeutic delivery system that can be engineered for multiple purposes, and posterior semicircular canal (PSCC) infusion is a method to directly deposit them into the cochlea.

View Article and Find Full Text PDF

Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive.

View Article and Find Full Text PDF

Migration routes and the depth patterns of anguillid eel larvae migrating long distances from spawning grounds in the ocean remain poorly understood. We used otolith stable isotope analysis to study the oceanic migrations of anguillid eels by reconstructing experienced water temperature histories of larvae. The otolith stable oxygen isotopes (δO) of recruited Anguilla japonica glass eels were analyzed to assess the relationship with the experienced water temperature of the early larval stage in laboratory experiments.

View Article and Find Full Text PDF

Chemically defined and dynamic click hydrogels support hair cell differentiation in human inner ear organoids.

Stem Cell Reports

December 2024

Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

The mechanical properties in the inner ear microenvironment play a key role in its patterning during embryonic development. To recapitulate inner ear development in vitro, three-dimensional tissue engineering strategies including the application of representative tissue models and scaffolds are of increasing interest. Human inner ear organoids are a promising model to recapitulate developmental processes; however, the current protocol requires Matrigel that contains ill-defined extracellular matrix components.

View Article and Find Full Text PDF

Objective: To compare the diagnostic capability of Pöschl reformations created from temporal bone CT (TBCT) and high-resolution noncontrast CT head exams (HR-NECTH) to detect and classify superior semicircular canal (SSC) abnormalities.

Study Design: Retrospective case review.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!