Necrotizing enterocolitis (NEC), a devastating infant disease characterized by severe intestinal necrosis, its pathogenesis is poorly understood, but appears to be multifactorial and highly associated with immaturity of gastrointestinal tract and immature innate-immune system. Breast-milk is effective strategy to protect infants against NEC. This study is using a NEC rat model to investigate the pathological mechanism of NEC involved intestinal-damages, and the therapeutic mechanism of sialylated human milk oligosaccharides (SHMOs) on NEC rats; also using cell model to investigate the effects of SHMOs on colon-epithelial cells (Caco-2) in-vitro. Extraction and characterization of SHMOs from breast milk, establishment of a NEC rat model, histopathological analysis and mast cell accounting of the terminal ileum were taken; The levels of DPPI, TLR4, IL-6, TNF-α, MMP-2/9 and glutathione were measured using various methods. Caco-2 cells were pre-treated with SHMOs and cultured with LPS, histamine, chymase or DPPI, cell viabilities and mitochondrial membrane potential were examined; flow cytometry was used to detect cell cycle. The accumulation of mast cells was found in the ileum of NEC rats, but prohibited by SHMOs treatment; the increased levels of TLR4, DPPI, IL-6, TNF-α, MMP-2/9 in NEC ileum were suppressed by SHMOs in-vivo. SHMOs prevented Caco-2 cells from LPS, histamine, chymase induced damages by surviving cell viability, regulating G0/G1 and S phase in cell cycles, and increasing mitochondrial membrane potential. These findings provide a new insight into the pharmacological mechanism of SHMOs treatment for NEC and suggest that SHMOs needs well attention for therapeutic aims.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2020.106881DOI Listing

Publication Analysis

Top Keywords

caco-2 cells
12
nec
9
shmos
9
breast milk
8
milk oligosaccharides
8
necrotizing enterocolitis
8
mast cell
8
nec rat
8
rat model
8
model investigate
8

Similar Publications

Purpose: Major depressive disorder is one of the most common and burdensome psychiatric disorders worldwide. This study evaluated the anxiolytic- and antidepressant-like activity of three semi-synthetic derivatives of xylopic acid (XA) to identify the most promising derivative based on mechanism(s) of action, in vivo pharmacokinetics and in vitro cytotoxicity.

Methods: The anxiolytic potential and the involvement of GABAergic mechanisms were assessed in the elevated plus-maze and open field tests in mice.

View Article and Find Full Text PDF

C9orf72 Alleviates DSS‑Induced Ulcerative Colitis via the cGAS-STING Pathway.

Immun Inflamm Dis

January 2025

Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong, China.

Purpose: C9orf72 deficiency contributes to severe inflammation in mice. Ulcerative colitis (UC) is a chronic inflammatory disorder with the shortage of clinical success. However, whether C9orf72 is involved in the progression of UC is not fully understood.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

Introduction: This study investigated the tryptic hydrolysis of β-lactoglobulin (BLG) for 30, 60, 90, and 120 min at 1/200 E/S (enzyme/substrate ratio, w/w) to prepare potentially anticarcinogenic peptides.

Methods: The properties of hydrolysates were characterized, including degree of hydrolysis, free amino acids, SDS-PAGE, FTIR, and antioxidant activity employing DPPH-assay, β-carotene/linoleic acid, and FRAP assay.

Results: BLG tryptic hydrolysate produced after 60 min hydrolysis recorded the highest antioxidant activity, and LCMS analysis revealed 162 peptides of molecular masses ranging from 800 to 5671Da, most of them are of hydrophobic nature.

View Article and Find Full Text PDF

Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition.

Eur J Pharm Sci

January 2025

Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium. Electronic address:

The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!