A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and Anammox coupling system. | LitMetric

Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and Anammox coupling system.

Bioresour Technol

School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.

Published: November 2020

This study investigated the shock resistance and the stability of a novel sulfide-dependent autotrophic denitrification (SDAD) and anaerobic ammonium oxidation (Anammox) coupling process for simultaneous removal of sulfide and nitrogen-containing wastewater in a single reactor. Results show that the total nitrogen (TN) removal efficiency reached 86.7% at a nitrogen loading rate (NLR) of 1.52 kgN m d. Sulfide was fully oxidized, achieving the removal efficiency of 100% throughout the whole process. Batch tests suggest that Anammox remained dominant with the cooperation of partial SDAD (PSDAD) and could always compete over short-cut SDAD (SSDAD) for nitrite. High-throughput sequencing analysis revealed that Anammox bacteria remained active despite a relatively lower abundance and diversity than denitrifying bacteria. Candidatus Kuenenia might be the main contributor to Anammox, while Thiobacillus and Sulfurimonas were closely related to SDAD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123969DOI Listing

Publication Analysis

Top Keywords

sulfide-dependent autotrophic
8
autotrophic denitrification
8
denitrification sdad
8
anammox coupling
8
removal efficiency
8
sdad
5
anammox
5
effects loading
4
loading rates
4
rates n/s
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!