A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Demonstrating the consequences of learning missingness patterns in early warning systems for preventative health care: A novel simulation and solution. | LitMetric

Demonstrating the consequences of learning missingness patterns in early warning systems for preventative health care: A novel simulation and solution.

J Biomed Inform

Department of Emergency Medicine, United States; Department of Biomedical Engineering, United States; Michigan Center for Integrative Research in Critical Care (MCIRCC), United States; Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, United States.

Published: October 2020

AI Article Synopsis

  • Using proper imputation methods is crucial in tree-based predictive analytics for healthcare, as learning missingness patterns can drastically reduce performance in different datasets.
  • A novel simulation generated synthetic electronic health records to highlight this issue and demonstrated that imputation methods like randomized and Bayesian regression can alleviate the problem.
  • The PICTURE system, developed using extensive patient data, showed promising results in predicting patient deterioration compared to existing early warning systems, achieving an AUROC of 0.83.

Article Abstract

When using tree-based methods to develop predictive analytics and early warning systems for preventive healthcare, it is important to use an appropriate imputation method to prevent learning the missingness pattern. To demonstrate this, we developed a novel simulation that generated synthetic electronic health record data using a variational autoencoder with a custom loss function, which took into account the high missing rate of electronic health data. We showed that when tree-based methods learn missingness patterns (correlated with adverse events) in electronic health record data, this leads to decreased performance if the system is used in a new setting that has different missingness patterns. Performance is worst in this scenario when the missing rate between those with and without an adverse event is the greatest. We found that randomized and Bayesian regression imputation methods mitigate the issue of learning the missingness pattern for tree-based methods. We used this information to build a novel early warning system for predicting patient deterioration in general wards and telemetry units: PICTURE (Predicting Intensive Care Transfers and other UnfoReseen Events). To develop, tune, and test PICTURE, we used labs and vital signs from electronic health records of adult patients over four years (n = 133,089 encounters). We analyzed primary outcomes of unplanned intensive care unit transfer, emergency vasoactive medication administration, cardiac arrest, and death. We compared PICTURE with existing early warning systems and logistic regression at multiple levels of granularity. When analyzing PICTURE on the testing set using all observations within a hospital encounter (event rate = 3.4%), PICTURE had an area under the receiver operating characteristic curve (AUROC) of 0.83 and an adjusted (event rate = 4%) area under the precision-recall curve (AUPR) of 0.27, while the next best tested method-regularized logistic regression-had an AUROC of 0.80 and an adjusted AUPR of 0.22. To ensure system interpretability, we applied a state-of-the-art prediction explainer that provided a ranked list of features contributing most to the prediction. Though it is currently difficult to compare machine learning-based early warning systems, a rudimentary comparison with published scores demonstrated that PICTURE is on par with state-of-the-art machine learning systems. To facilitate more robust comparisons and development of early warning systems in the future, we have released our variational autoencoder's code and weights so researchers can (a) test their models on data similar to our institution and (b) make their own synthetic datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2020.103528DOI Listing

Publication Analysis

Top Keywords

early warning
24
warning systems
20
electronic health
16
learning missingness
12
missingness patterns
12
tree-based methods
12
novel simulation
8
missingness pattern
8
health record
8
record data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!