We study quantum fluctuations of macroscopic parameters of a nonlinear Schrödinger breather-a nonlinear superposition of two solitons, which can be created by the application of a fourfold quench of the scattering length to the fundamental soliton in a self-attractive quasi-one-dimensional Bose gas. The fluctuations are analyzed in the framework of the Bogoliubov approach in the limit of a large number of atoms N, using two models of the vacuum state: white noise and correlated noise. The latter model, closer to the ab initio setting by construction, leads to a reasonable agreement, within 20% accuracy, with fluctuations of the relative velocity of constituent solitons obtained from the exact Bethe-ansatz results [Phys. Rev. Lett. 119, 220401 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.220401] in the opposite low-N limit (for N≤23). We thus confirm, for macroscopic N, the breather dissociation time to be within the limits of current cold-atom experiments. Fluctuations of soliton masses, phases, and positions are also evaluated and may have experimental implications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.125.050405DOI Listing

Publication Analysis

Top Keywords

quantum fluctuations
8
parameters nonlinear
8
nonlinear schrödinger
8
fluctuations center
4
center mass
4
mass relative
4
relative parameters
4
schrödinger breathers
4
breathers study
4
study quantum
4

Similar Publications

Effects of the Quantum Vacuum at a Cosmic Scale and of Dark Energy.

Entropy (Basel)

November 2024

Departamento de Física, Universidad de Cantabria, 39005 Santander, Spain.

The Einstein equation in a semiclassical approximation is applied to a spherical region of the universe, with the stress-energy tensor consisting of the mass density and pressure of the ΛCDM cosmological model plus an additional contribution due to the quantum vacuum. Expanding the equation in powers of Newton constant G, the vacuum contributes to second order. The result is that at least a part of the acceleration in the expansion of the universe may be due to the quantum vacuum fluctuations.

View Article and Find Full Text PDF

Exploring the Thermodynamic Uncertainty Constant: Insights from a Quasi-Ideal Nano-Gas Model.

Entropy (Basel)

November 2024

Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 224, Bvd du Triomphe, 1050 Brussels, Belgium.

In previous work, we investigated thermodynamic processes in systems at the mesoscopic level where traditional thermodynamic descriptions (macroscopic or microscopic) may not be fully adequate. The key result is that entropy in such systems does not change continuously, as in macroscopic systems, but rather in discrete steps characterized by the quantization constant β. This quantization reflects the underlying discrete nature of the collision process in low-dimensional systems and the essential role played by thermodynamic fluctuations at this scale.

View Article and Find Full Text PDF

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.

View Article and Find Full Text PDF

In recent years, there has been an increase in the study of the mechanisms behind plasma oncology. For this, many wet lab experiments and computational studies were conducted. Computational studies give an advantage in examining protein structures that are costly to extract in enough amounts to analyze the biophysical properties following plasma treatment.

View Article and Find Full Text PDF

Reinforcement Learning Optimization of the Charging of a Dicke Quantum Battery.

Phys Rev Lett

December 2024

Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany.

Quantum batteries are energy-storing devices, governed by quantum mechanics, that promise high charging performance thanks to collective effects. Because of its experimental feasibility, the Dicke battery-which comprises N two-level systems coupled to a common photon mode-is one of the most promising designs for quantum batteries. However, the chaotic nature of the model severely hinders the extractable energy (ergotropy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!