Scintillators are central for detection of γ-ray, x-ray, and high energy particles in various applications, all seeking higher scintillation yield and rate. However, these are limited by the intrinsic isotropy of spontaneous emission of the scintillation light and its inefficient outcoupling. We propose a new design methodology for scintillators that exploits the Purcell effect to enhance their light emission. As examples, we show 1D photonic crystals from scintillator materials that achieve directional emission and fivefold enhancement in the number of detectable photons per excitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.040801 | DOI Listing |
ACS Nano
June 2024
Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
This review focuses on modern scintillators, the heart of ionizing radiation detection with applications in medical diagnostics, homeland security, research, and other areas. The conventional method to improve their characteristics, such as light output and timing properties, consists of improving in material composition and doping, which are intrinsic to the material. On the contrary, we review recent advancements in cutting-edge approaches to shape scintillator characteristics via photonic and metamaterial engineering, which are extrinsic and introduce controlled inhomogeneity in the scintillator's surface or volume.
View Article and Find Full Text PDFThe limited pattern area of periodic nanostructures limits the development of practical devices. This study introduces an X-ray interference lithography (XIL) stitching technique to fabricate a large-area (1.5 cm × 1.
View Article and Find Full Text PDFScintillators play an important role in the field of nuclear radiation detection. However, the light output of the scintillators is often limited by total internal reflection due to the high refractive indices of the scintillators. Furthermore, the light emission from scintillators typically has an approximately Lambertian profile, which is detrimental to the collection of the light.
View Article and Find Full Text PDFPhys Rev Lett
July 2020
Department of Electrical Engineering, Technion, Israel Institute of Technology, 32000 Haifa, Israel.
Scintillators are central for detection of γ-ray, x-ray, and high energy particles in various applications, all seeking higher scintillation yield and rate. However, these are limited by the intrinsic isotropy of spontaneous emission of the scintillation light and its inefficient outcoupling. We propose a new design methodology for scintillators that exploits the Purcell effect to enhance their light emission.
View Article and Find Full Text PDFThe low light-extraction efficiency of scintillators is due to total internal reflection and has led to the extensive use of photonic crystals to improve the light output. However, in some applications, photonic crystals cannot be fabricated directly on scintillators. Here, we demonstrate a promising method to improve the light output of scintillators by using a buffer layer coated with photonic crystals and then fixed to the scintillator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!