Metal nanoparticles, especially silver nanoparticles (AgNPs), have drawn increasing attention for antimicrobial applications. Most studies have emphasized on the correlations between the antibacterial potency of AgNPs and the kinetics of metallic to ionic Ag conversion, while other antimicrobial mechanisms have been underestimated. In this work, we focused on the surface effects of polydopamine (PDA) coating on the antimicrobial activity of AgNPs. A method of fast deposition of PDA was used to synthesize the PDA-AgNPs with controllable coating thickness ranging from 3 to 25 nm. The antimicrobial activities of the PDA-AgNPs were analyzed by fluorescence-based growth curve assays on . The results indicated that the PDA-AgNPs exhibited significantly higher antibacterial activities than poly(vinylpyrrolidone)-passivated AgNPs (PVP-AgNPs) and PDA themselves. It was found that the PDA coating synergized with the AgNPs to prominently enhance the potency of the PDA-AgNPs against bacteria. The analysis of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy elucidated that the synergistic effects could be originated from the interaction/coordination between Ag and catechol group on the PDA coating. The synergistic effects led to increased generation of reactive oxygen species and the consequent bacterial damage. These findings demonstrated the importance of the surface effects on the antimicrobial properties of AgNPs. The underlying molecular mechanisms have shined light on the future development of more potent metal nanoparticle-based antimicrobial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c10517DOI Listing

Publication Analysis

Top Keywords

pda coating
12
antimicrobial activity
8
silver nanoparticles
8
surface effects
8
synergistic effects
8
antimicrobial
7
agnps
6
coating
5
pda
5
polydopamine surface
4

Similar Publications

Decentralized testing using multiplex lateral flow assays (mLFAs) to simultaneously detect multiple analytes can significantly enhance detection efficiency, reduce cost and time, and improve analytic accuracy. However, the challenges, including the monochromatic color of probe particles, interference between different test lines, and reduced specificity and sensitivity, severely hinder mLFAs from wide use. In this study, we prepared polydopamine (PDA)-coated dyed cellulose nanoparticles (dCNPs@P) with tunable colors as the probe for mLFAs.

View Article and Find Full Text PDF

Thyroid-Targeted Nano-Bombs Empower HIFU for Graves' Disease.

Adv Sci (Weinh)

January 2025

The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.

Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.

View Article and Find Full Text PDF

Microglial-Biomimetic Memantine-Loaded Polydopamine Nanomedicines for Alleviating Depression.

Adv Mater

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.

Depression is a common psychiatric disorder, and monoamine-based antidepressants as first-line therapy remain ineffective in some patients. The synergistic modulation of neuroinflammation and neuroplasticity could be a major strategy for treating depression. In this study, an inflammation-targeted microglial biomimetic system, PDA-Mem@M, is reported for treating depression.

View Article and Find Full Text PDF

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Homotypic membrane-camouflaged camptothecin nanorods combining photothermal and chemotherapy for synergistic antitumor therapy.

Int J Pharm

January 2025

Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China. Electronic address:

Chemotherapy hardly achieves satisfactory therapeutic efficacy owing to the widely occurred adverse effects and drug tolerance, and the extensively investigated delivery systems suffer from complicated synthesis, low drug loading and less efficient tumor accumulation. Herein, we developed rod-shape nanocrystals to address challenges in the circulation stability, tumor targeting and therapeutic efficacy of camptothecin (CPT), a mainstay of treatments for various cancers. CPT nanorods (CNR) were coated with polydopamine (PDA) to achieve combinational chemo- and photothermal therapies (PTT) and then wrapped with cell membrane (CM) from homotypic tumor cells to obtain CNR@PDA-CM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!