A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Correlation of clinical outcome, radiobiological modeling of tumor control, normal tissue complication probability in lung cancer patients treated with SBRT using Monte Carlo calculation algorithm. | LitMetric

Purpose/background: We analyzed the predictive value of non-x-ray voxel Monte Carlo (XVMC)-based modeling of tumor control probability (TCP) and normal tissue complication probability (NTCP) in patients treated with stereotactic body radiotherapy (SBRT) using the XVMC dose calculation algorithm.

Materials/methods: We conducted an IRB-approved retrospective analysis in patients with lung tumors treated with XVMC-based lung SBRT. For TCP, we utilized tumor size-adjusted biological effective dose (s-BED) TCP modeling validated in non-MC dose calculated SBRT to: (1) verify modeling as a function of s-BED in patients treated with XVMC-based SBRT; and (2) evaluate the predictive potential of different PTV dosimetric parameters (mean dose, minimum dose, max dose, prescription dose, D95, D98, and D99) for incorporation into the TCP model. Correlation between observed local control and TCPs was assessed by Pearson's correlation coefficient. For NTCP, Lyman NTCP Model was utilized to predict grade 2 pneumonitis and rib fracture.

Results: Eighty-four patients with 109 lung tumors were treated with XVMC-based SBRT to total doses of 40 to 60 Gy in 3 to 5 fractions. Median follow-up was 17 months. The 2-year local and local-regional control rates were 91% and and 78%, respectievly. All estimated TCPs correlated significantly with 2-year actuarial local control rates (P < 0.05). Significant corelations between TCPs and tumor control rate according to PTV dosimetric parameters were observed. D99 parameterization demonstrated the most robust correlation between observed and predicted tumor control. The incidences of grade 2 pneumonitis and rib fracture vs. predicted were 1% vs. 3% and 10% vs. 13%, respectively.

Conclusion: Our TCP results using a XVMC-based dose calculation algorithm are encouraging and yield validation to previously described TCP models using non-XVMC dose methods. Furthermore, D99 as potential predictive parameter in the TCP model demonstrated better correlation with clinical outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592969PMC
http://dx.doi.org/10.1002/acm2.13004DOI Listing

Publication Analysis

Top Keywords

patients treated
12
treated xvmc-based
12
modeling tumor
8
tumor control
8
normal tissue
8
tissue complication
8
complication probability
8
monte carlo
8
lung tumors
8
tumors treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!