Background/aim: The viability of periodontal ligament cells on the root surface is a major factor that influences the healing of replanted teeth. A suitable storage medium is necessary to preserve avulsed teeth before replantation. Conditioned medium from placenta-derived mesenchymal stem cells (PMSC-CM) contains a variety of growth factors. The aim of this study was to evaluate the effectiveness of PMSC-CM as a storage medium to maintain the cell viability of avulsed teeth.
Material And Methods: Extracted premolars from healthy humans were randomly stored in Hank's balanced salt solution (HBSS) and PMSC-CM for 6, 12 and 24 hours, respectively, at room temperature, and then the ratio of apoptosis of the periodontal ligament (PDL) cells was identified by flow cytometry. Human periodontal ligament stem cells (PDLSCs) were incubated with HBSS and PMSC-CM, respectively, for 6, 12, 24 and 48 hours in 5% CO at 37°C. Then, the cell viability of PDLSCs was determined using the cell counting kit-8 (CCK-8) and a cell cycle assay was performed.
Results: The apoptosis rate of PDL cells in PMSC-CM was significantly lower than that in HBSS at 24 hours (P < .001), while the two groups showed similar cell apoptosis rates at 6 and 12 hours (P > .05). The cell proliferation of PDLSCs treated with PMSC-CM significantly increased compared with the HBSS group (P < .05). The cell cycle assay revealed that the PDLSCs treated with HBSS were arrested at the G1 phase, while there was no difference between the PMSC-CM group and the control group (P > .05).
Conclusions: Compared with HBSS, PMSC-CM showed better inhibition of apoptosis of PDL cells and promoted the proliferation of PDLSCs. Thus, PMSC-CM could be a promising storage medium for avulsed teeth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/edt.12599 | DOI Listing |
ACS Omega
December 2024
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
In deep and ultradeep clastic reservoirs, secondary porosity functions as the primary space for hydrocarbon storage, intricately associated with the dissolution processes of water-soluble organic acids (WSOAs). However, conventional theories concerning secondary porosity predominantly emphasize medium-depth or shallow reservoirs, lacking a thorough investigation into how WSOA-driven mechanisms affect deeper strata formations. To bridge this gap, our research involved selecting 36 samples from Mesozoic Permian clastic rock formations situated in western China's Fukang Sag within the Junggar Basin region.
View Article and Find Full Text PDFSmall
December 2024
Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069, Dresden, Germany.
Transition metal phosphide (TMP) nanoparticles (NPs) are versatile materials for energy conversion/storage applications due to their robustness and many possibilities to tailor NPs' electronic, physical, and chemical properties. One of the hurdles toward their broader implementation is their challenging synthesis exacerbated by the limited choice of phosphorus precursors. On the one hand, the synthesis of TMP NPs can employ various alkyl- or arylphosphines requiring prolonged heating at high temperatures, while on the other hand, highly reactive P(SiMe), white phosphorus, or PH pose additional obstacles associated with their hazardous nature, high cost, and limited availability.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Ammonia (NH) is an important commodity chemical used as an agricultural fertilizer and hydrogen-storage material. There has recently been much interest in developing an environmentally benign process for NH synthesis. Here, we report enhanced production of ammonia from diazotrophs under light irradiation using hybrid composites of inorganic nanoparticles (NPs) and bacterial cells.
View Article and Find Full Text PDF3 Biotech
January 2025
ICAR- National Bureau of Plant Genetic Resources, New Delhi, 110012 India.
India is a treasure trove of biological diversity with its plant genetic resources playing a crucial role in the crop improvement serving as the foundation for the country's sustainable food and nutritional security. India's in vitro genebank (IVG) is part of the National Genebank at the Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR). The IVG houses distinctive multi-crop repository that utilizes several tissue culture techniques for short- to medium-term storage in in vitro active genebank (IVAG) and cryoconservation approaches for long-term storage in in vitro base genebank (IVBG).
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China.
Lily bulb rot disease has harmed edible lily in recent years, resulting in yield losses in China. As a results, both morphological and molecular techniques must be used to confirm the etiology of storage bulb rot disease on lily bulbs. Lily bulbs with indications of rot symptoms during storage were gathered in Lanzhou, Gansu Province, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!