The success of using immune checkpoint inhibitors to treat cancers implies that inhibiting an immunosuppressive cytokine, such as TGF-β2, could be a strategy to develop novel adjuvants for microbial vaccines. To develop nucleic acid based TGF-β2 inhibitors, we designed three antisense oligonucleotides, designated as TIO1, TIO2, and TIO3, targeting the conserve regions identical in human and mouse TGF-β2 mRNA 3'-untranslated region. In cultured immune cells, TIO3 and TIO1 significantly reduced the TGF-β2 mRNA expression and protein production. In mice, the TIO3 and TIO1, when formulated in various microbial vaccines, significantly enhanced the antibody response to the vaccines, and the TIO3-adjuvanted influenza virus vaccine induced effective protection against the influenza virus challenge. In the immunized mice, TIO3 formulated in microbial vaccines dramatically reduced surface-bound TGF-β2 expression on CD4 T cells and CD19 B cells in the lymph node (LN) cells and spleen cells; up-regulated the expression of CD40, CD80, CD86, and MHC II molecules on CD19 B cells and CD11c dendritic cells; and promoted IFN-γ production in CD4 T cells and CD8 T cells in the LN cells. Overall, TIO3 or TIO1 could be used as a novel type of adjuvant for facilitating the microbial vaccines to elicit more vigorous and persistent antibody response by interfering with TGF-β2 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/JLB.5A0420-491R | DOI Listing |
Poult Sci
January 2025
Department of Microbiology, Faculty of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran.
A major health and financial burden in the chicken sector is salmonella infection. It is difficult to create an oral vaccination that can provide strong intestinal mucosal immunity in birds, particularly cross-protection against several Salmonella serotypes. As a result, the poultry industry needs a powerful oral vaccination platform that uses live bacterial vectors to prevent various Salmonella serotypes.
View Article and Find Full Text PDFViruses
January 2025
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects.
View Article and Find Full Text PDFMicroorganisms
January 2025
Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
For decades, Alzheimer's Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology.
View Article and Find Full Text PDFMicroorganisms
January 2025
Healthy Skin Team, Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, Perth, WA 6009, Australia.
Recent interest in the diverse ecosystem of bacteria, fungi, parasites, and viruses that make up the skin microbiome has led to several studies investigating the microbiome in healthy skin and in a variety of dermatological conditions. An imbalance of the normal skin flora can cause some skin diseases, and current culture techniques are often unable to detect a microorganism to further our understanding of the clinical-microbiological correlates of disease and dysbiosis. Atopic dermatitis and rosacea are presentations that GPs often manage that may have an infective or microbiological component and can be challenging to treat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!