In this work, we have characterized the interactions of monospermine porphyrin derivative with calf thymus DNA (ct-DNA) and poly (dG-dC) in both B and Z conformation. By several spectroscopic techniques (UV-vis, electronic circular dichroism and resonance light scattering), the binding modes of monospermine porphyrin derivative with different DNA sequences have been elucidated. In the presence of ct-DNA, the porphyrin binds along the external double helix as well as in the presence of B conformation of poly (dG-dC) . Whilst when the Z form of the poly (dG-dC) is induced, a slight intercalation of the porphyrin between the basis has been detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.23272 | DOI Listing |
Protein Sci
February 2025
Department of Chemistry, Institute of Biochemistry, BOKU University, Vienna, Austria.
Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Faculty of Basic Sciences, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt.
Antimicrobial resistance (AMR) poses a critical global health threat, driving the search for alternative treatments to conventional antibiotics. In this study, the antibacterial properties of honeybee venom (BV) and fungal red dye (RD) were evaluated against three multidrug-resistant bacterial pathogens. Extracts of BV and RD exhibited dose-dependent antibacterial activity against the three tested bacteria, with their strongest effectiveness against (minimum inhibitory concentrations [MIC] = 3.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004 PR China. Electronic address:
Pollution caused by antibiotics, bacteria, and organic dyes presents global public health challenges, posing serious risks to human health. Consequently, new, efficient, fast, and simple photocatalytic systems are urgently required. To this end, 2,7-di(pyridin-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)-an electron acceptor-is introduced as a connecting column into a porphyrin-based metal-organic layer (2DTcpp) with excellent photocatalytic activity; this modification yields a three-dimensional pillar-layered metal-organic framework (MOF, 3DNDITcpp) with superior photocatalytic reactive oxygen species (ROS) generation capability.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!