Medications administered by anesthesia health care providers and subsequently excreted into the water supply system have the potential to affect ecological systems. Presently, there is a lack of literature examining which medications or metabolites enter the waste stream. Further, their potential environmental impacts are often unknown or simply not considered as an externality of medical practice. Recent work examining the practice of anesthesiology has explored the solid waste stream, and the global warming potential of anesthetic gases, however the potential aquatic impacts remain unexplored. To address the potential for waterborne pollution and environmental toxicity, we extracted the total intravenous medications (by mass) administered by anesthesiologists in 2017 at The University of Vermont Medical Center (UVMMC), a mid-size regional Level 1 trauma center in Burlington, VT. The most commonly administered medications were: cefazolin, propofol, acetaminophen, sugammadex and lidocaine. To estimate the amount of each medication that entered the wastewater stream, we used published metabolism profiles to adjust from the total amount administered to the amount excreted unchanged or as prominent metabolites. For each medication we reviewed existing literature concerning their environmental fate and impacts in water. Due to the constraints of current knowledge, it is not possible to determine the exact fate and impacts of these drugs. Some medications, like propofol, have the potential for significant bioaccumulation and persistence. Others, such as lidocaine and acetaminophen, have short half-lives in the environment but their constant delivery and excretion result in pseudo-persistence. The current literature mostly assesses acute exposure at doses higher than could be expected in the environment on select species. While significant toxicities across a variety of species have been found repeatedly, chronic low dose exposures require further study for all the medications discussed. Finally, multi-drug impacts are likely to be more impactful than single-drug toxicities. While we cannot state definitive impacts, the pharmaceuticals most used in anesthesiology have a clear toxic potential and future studies should more closely examine the relative contribution of anesthesia to pharmaceutical pollution, as well as points of intervention for minimizing these unintended consequences of healthcare delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10916-020-01634-2 | DOI Listing |
Food Chem
December 2024
Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.
Long-term storage of Liupao tea is conducive to improving its flavour and commercial value. Although bacterial communities influence Liupao tea flavour, their impact during storage remains unclear. The aroma compounds and bacterial communities were determined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and Illumina Nova6000 analysis.
View Article and Find Full Text PDFEnviron Technol
January 2025
Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, People's Republic of China.
P-chlorophenol (4-CP) and hexavalent chromium (Cr (VI)) are predominant contaminants in industrial effluents, eliciting substantial environmental and human health concerns. As a strong oxidant, Cr (Ⅵ) has the potential to facilitate the removal of 4-CP. However, the specific removal effect remains unclear.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!