Purpose: Penetration enhancers (PEs) enhancing efficacy depends on two processes: PEs release from patches and action on skin. Compared with their action on skin, PEs release process was poorly understood. Therefore, the purpose of this study was to make a mechanistic understanding of PEs release from acrylic pressure-sensitive adhesive of patches and propose an unconventional enhancement of PEs efficacy.
Methods: PEs efficacy was evaluated both in drug permeation study and drug pharmacokinetic study. Confocal Raman spectroscopy was employed to observe PEs release behavior by mapping PEs dynamic distribution in skin. The mechanism of PEs release behavior was provided from molecular interaction and rheology using FT-IR, molecular docking, molecular dynamic simulation and rheometer, separately.
Results: The release behavior of PEs themselves greatly restricted their efficacy. By using PEG 400, an improvement of oleic acid (OA) release behavior was achieved, and the efficacy of OA was significantly enhanced with enhancing ratio (ER) from 2.69 to 4.10 and AUC from 1574 ± 87 to 2664 ± 249 ng·h/mL, separately. The improvement of OA release behavior was primarily resulted from reduction of the interaction between OA and adhesive, which was caused by other small molecules with a strong ability in forming hydrogen bonds with adhesive. Also, the rigidity of adhesive was a factor in affecting PEs release behavior.
Conclusions: An unconventional passive enhancement of transdermal drug delivery was achieved via improving PEs themselves releasing from acrylic pressure-sensitive adhesive. Graphical abstract Influence of PEs release behavior on drug permeation through skin and molecular mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-020-02901-0 | DOI Listing |
J Chromatogr A
December 2024
Environmental & Food Safety Research group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Road CV-315 Km 10.7, 46113, Moncada, Valencia, Spain.
Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated.
View Article and Find Full Text PDFPrecis Chem
December 2024
Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
Atomic simulations aim to understand and predict complex physical phenomena, the success of which relies largely on the accuracy of the potential energy surface description and the efficiency to capture important rare events. LASP software (large-scale atomic simulation with a Neural Network Potential), released in 2018, incorporates the key ingredients to fulfill the ultimate goal of atomic simulations by combining advanced neural network potentials with efficient global optimization methods. This review introduces the recent development of the software along two main streams, namely, higher intelligence and more automation, to solve complex material and reaction problems.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Zanjan, PO Box 38791-45371 Zanjan, Iran.
The high abundance of acetone ((CH)C═O), which makes it a good candidate for oxygenated molecules, and the high reactivity of oxygen atoms in the first excited state O(D) are two well-known facts in the chemistry of the atmosphere. In this research, we prove that the singlet oxygen and acetone system is capable of proceeding through multiwell multipath reactions, leading to the production of several organic aerosols. Hence, the nature of species released by the (CH)C═O + O(D) reaction to air can be clarified by profound attention to the possible routes.
View Article and Find Full Text PDFMol Divers
December 2024
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
The present study aimed to develop robust machine learning (ML) models to predict the skin permeability of poorly water-soluble drugs in the presence of menthol and limonene as penetration enhancers (PEs). The ML models were also applied in virtual screening (VS) to identify hydrophobic drugs that exhibited better skin permeability in the presence of permeation enhancers i.e.
View Article and Find Full Text PDFInt J Pharm X
June 2024
Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa-403 001, India.
Studies have reported the potential role of Boswellic acids (BAs), bioactive pentacyclic triterpenes from (BS), in treating rheumatoid arthritis (RA). However, poor water solubility and limited oral absorption are restricting factors for its better therapeutic efficacy. Based on these assumptions, the current study aimed to develop naturosomal delivery of BAs to boost their extremely low bioavailability, colloidal stability, and water solubility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!