Early high-fat feeding improves histone modifications of skeletal muscle at middle-age in mice.

Lab Anim Res

Department of Sports and Health Science, Faculty of Human Health and Science, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano 390-1295 Japan.

Published: August 2020

The purpose of the present study was to investigate how the effects of high-fat diet feeding on the skeletal muscle persisted during aging using mice. Post-weaned male mice were fed a high-fat diet between 1- and 3-mo-old followed by return to supply a normal diet until 13-mo-old. Monthly physical tests demonstrated that age-related glucose intolerance that was generally developed after 10-mo-old in the control mice was significantly improved in mice fed a high-fat diet. Interestingly, mRNA expressions of , , and were up-regulated by high-fat feeding and persisted in the tibialis anterior muscle until 13-mo-old. At and loci, enhanced distributions of active histone modifications were noted in the high-fat-fed mice at 13-mo-old. In contrast, age-related accumulation of histone variant H3.3 at these loci was suppressed. These results indicated that epigenetic modifications caused by early nutrition mediated the changes in skeletal muscle gene expression during aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414670PMC
http://dx.doi.org/10.1186/s42826-020-00060-2DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
high-fat diet
12
high-fat feeding
8
histone modifications
8
mice fed
8
fed high-fat
8
mice
6
early high-fat
4
feeding improves
4
improves histone
4

Similar Publications

Unveiling the relation between swallowing muscle mass and skeletal muscle mass in head and neck cancer patients.

Eur Arch Otorhinolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO box 30.001, Groningen, 9700RB, The Netherlands.

Purpose: Sarcopenia, characterized by loss of skeletal muscle mass (SMM) and strength, often leads to dysphagia in the elderly. This condition can also worsen treatment outcomes in head and neck cancer (HNC) patients, who are susceptible to swallowing difficulties. This study aimed to establish the correlation between swallowing muscle mass (SwMM) and SMM in HNC patients.

View Article and Find Full Text PDF

The purpose of this study is to evaluate the effectiveness of intensity-modulated radiation therapy (IMRT) combined with periorbital triamcinolone acetonide injection in treating thyroid eye disease (TED) patients with active extraocular muscle but low CAS. The retrospective observational study was conducted. A total of 156 eligible patients were selected from the TED patient database of the Ophthalmology Department of West China Hospital of Sichuan University.

View Article and Find Full Text PDF

This study aimed to investigate the role of myosteatosis, sarcopenia, and perioperative serum biomarkers as independent predictors of major complications within 180 days following radical cystectomy (RC) for muscle-invasive bladder cancer (MIBC). We retrospectively analyzed of 127 MIBC patients who underwent RC between 2013 and 2023 at a single institution. Preoperative body composition was assessed using CT scans at the L3 vertebral level to measure psoas muscle density (PMD), skeletal muscle density (SMD), axial muscle density (AMD), and muscle indices.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!