Plant Methods
U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, AZ 85138 USA.
Published: August 2020
Background: Photosynthesis is one of the most important biological reactions and forms the basis of crop productivity and yield on which a growing global population relies. However, to develop improved plant cultivars that are capable of increased productivity, methods that can accurately and quickly quantify photosynthetic efficiency in large numbers of genotypes under field conditions are needed. Chlorophyll fluorescence imaging is a rapid, non-destructive measurement that can provide insight into the efficiency of the light-dependent reactions of photosynthesis.
Results: To test and validate a field-deployed fluorescence imaging system on the TERRA-REF field scanalyzer, leaves of potted sorghum plants were treated with a photosystem II inhibitor, DCMU, to reduce photochemical efficiency (F/F). The ability of the fluorescence imaging system to detect changes in fluorescence was determined by comparing the image-derived values with a handheld fluorometer. This study demonstrated that the imaging system was able to accurately measure photochemical efficiency (F/F) and was highly correlated ( = 0.92) with the handheld fluorometer values. Additionally, the fluorescence imaging system was able to track the decrease in photochemical efficiency due to treatment of DCMU over a 7 day period.
Conclusions: The system's ability to capture the temporal dynamics of the plants' response to this induced stress, which has comparable dynamics to abiotic and biotic stressors found in field environments, indicates the system is operating correctly. With the validation of the fluorescence imaging system, physiological and genetic studies can be undertaken that leverage the fluorescence imaging capabilities and throughput of the field scanalyzer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419188 | PMC |
http://dx.doi.org/10.1186/s13007-020-00650-0 | DOI Listing |
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
The neuronal tau peptide serves as a key biomarker for neurodegenerative diseases, specifically, Alzheimer's disease, a condition that currently has no cure or definitive diagnosis. The methodology to noninvasively detect tau levels from body fluids remains a major hurdle for a rapid and simple diagnostic approach. Thus, developing new detection methods for sensing tau protein levels is crucial.
View Article and Find Full Text PDFSmall
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China.
Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Antiferromagnets with broken time-reversal ( ) symmetry ( -odd antiferromagnets) have gained extensive attention, mainly due to their ferromagnet-like behavior despite the absence of net magnetization. However, certain types of -odd antiferromagnets remain inaccessible by the typical ferromagnet-like phenomena (e.g.
View Article and Find Full Text PDFPhotosynthetica
January 2025
Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720 California, USA.
We honor Professor Hartmut Karl Lichtenthaler, a versatile pioneer of photosynthesis research, plant physiology, isoprenoid biochemistry, and stress physiology of plants, for his groundbreaking and creative contributions to plant science. His innovative research on the chemical composition, ultrastructure, and function of chloroplasts and his detection of the major methylerythritol 4-phosphate (MEP) isoprenoid biosynthetic pathway in plants is key to our current understanding of the physiology and biochemistry of photosynthesis systems. His ingenious use of the powerful laser-induced chlorophyll fluorescence imaging has helped us better understand the stress response processes in plant leaves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.