Glucagon is a pancreatic hormone and increases the blood glucose levels. It may be incorporated in a dual hormone artificial pancreas, a device to automatically and continuously control blood glucose levels of individuals with diabetes. Artificial pancreas systems have been developed for use in the subcutaneous tissue; however, the systems are not fully automated due to slow dynamics. The intraperitoneal space is therefore investigated as an alternative location for an artificial pancreas. Glucose dynamics after subcutaneous and intraperitoneal glucagon delivery in ten anaesthetized pigs were investigated. The pigs received intraperitoneal boluses of 0.3 µg/kg and 0.6 µg/kg and a subcutaneous bolus of 0.6 µg/kg in randomized order. They also received an intraperitoneal bolus of 1 mg given at the end of the experiments to test the remaining capacity of rapid glucose release. Six pigs were included in the statistical analysis. The intraperitoneal glucagon bolus of 0.6 µg/kg gave a significantly higher glucose response from 14 to 30 min compared with the subcutaneous bolus. The results indicate that glucagon induces a larger glucose response after intraperitoneal delivery compared with subcutaneous delivery and is encouraging for the incorporation of glucagon in an intraperitoneal artificial pancreas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426268 | PMC |
http://dx.doi.org/10.1038/s41598-020-70813-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!