The coronavirus disease 2019 (COVID-19) pandemic has remarkably challenged health care organizations and societies. A key strategy for confronting the disease implications on individuals and communities was based on harnessing multidisciplinary efforts to develop technologies for mitigating the disease spread and its deleterious clinical implications. One of the main challenging characteristics of COVID-19 is the provision of medical care to patients with a highly infective disease mandating the use of isolation measures. Such care is complicated by the need for complex critical care, dynamic treatment guidelines, and a vague knowledge regarding the disease's pathophysiology. A second key component of this challenge was the overwhelming surge in patient burden and the relative lack of trained staff and medical equipment which required rapid re-organization of large systems and augmenting health care efficiencies to unprecedented levels. In contrast to the risk management strategies employed to mitigate other serious threats and the billions of dollars that are invested in reducing these risks annually by governments around the world, no such preparation has been shown to be of effect during the current COVID-19 pandemic. Unmet needs were identified within the newly opened COVID-19 departments together with the urgent need for reliable information for effective decision-making at the state level.This review article describes the early research and development response in Israel under the scope of in-hospital patient care, such as non-contact sensing of patients' vital signs, and how it could potentially be weaved into a practical big picture at the hospital or national level using a strategic management system. At this stage, some of the described technologies are still in developmental or clinical evidence generation phases with respect to COVID-19 settings. While waiting for future publications describing the results of the ongoing evidence generation efforts, one should be aware of this trend as these emerging tools have the potential to further benefit patients as well as caregivers and health care systems beyond the scope of the current pandemic as well as confronting future surges in the number of cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7426553PMC
http://dx.doi.org/10.5041/RMMJ.10417DOI Listing

Publication Analysis

Top Keywords

health care
12
strategic management
8
covid-19 pandemic
8
evidence generation
8
care
7
covid-19
6
technological developments
4
developments strategic
4
management overcoming
4
overcoming covid-19
4

Similar Publications

Most people with mental health needs cannot access treatment; among those who do, many access services only once. Accordingly, single-session interventions (SSIs) may help bridge the treatment gap. We conducted the first umbrella review synthesizing research on SSIs for mental health problems and service engagement in youth and adults.

View Article and Find Full Text PDF

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.

View Article and Find Full Text PDF

Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!