The restructuring of interfaces plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different compositions and morphologies at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of long-time scale restructuring of Pd deposited on Ag using microscopy, spectroscopy, and novel simulation methods. By developing and performing accelerated machine-learning molecular dynamics followed by an automated analysis method, we discover and characterize previously unidentified surface restructuring mechanisms in an unbiased fashion, including Pd-Ag place exchange and Ag pop-out as well as step ascent and descent. Remarkably, layer-by-layer dissolution of Pd into Ag is always preceded by an encapsulation of Pd islands by Ag, resulting in a significant migration of Ag out of the surface and a formation of extensive vacancy pits within a period of microseconds. These metastable structures are of vital catalytic importance, as Ag-encapsulated Pd remains much more accessible to reactants than bulk-dissolved Pd. Our approach is broadly applicable to complex multimetallic systems and enables the previously intractable mechanistic investigation of restructuring dynamics at atomic resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c06401 | DOI Listing |
Sci Rep
December 2024
Brain Dynamics Lab, Interdisciplinary Center of Biomedical and Engineering Research for Health, Universidad de Valparaíso, Valparaíso, Chile.
Multi-state metastability in neuroimaging signals reflects the brain's flexibility to transition between network configurations in response to changing environments or tasks. We modeled these dynamics with a Kuramoto network of 90 nodes oscillating at an intrinsic frequency of 40 Hz, interconnected using human brain structural connectivity strengths and delays. We simulated this model for 30 min to generate multi-state metastability.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
Comonomer defects can induce semicrystalline polymers to form unique crystalline structures (., defect crystals), which can greatly influence the materials' physical properties. However, the formation mechanism and structural evolution of defect polymer crystals are not yet well understood.
View Article and Find Full Text PDFSmall
December 2024
Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab, 140306, India.
Dynamic peptide networks represent an attractive structural space of supramolecular polymers in the realm of emergent complexity. Point mutations in the peptide sequence exert profound effects over the landscapes of self-assembly with an intricate interplay among the structure-function relationships. Herein, the pathway complexity of an arginine-rich peptide is studied, FmocVFFARR derived by the mutation of minimalist amyloid-inspired peptide amphiphile FmocVFFAKK, thereby focusing on its pathway-dependent self-assembly behavior.
View Article and Find Full Text PDFbioRxiv
December 2024
Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA.
(HNVs), a genus within the family, includes the highly virulent Nipah and Hendra viruses that cause yearly reoccurring outbreaks of deadly disease. Recent discoveries of several new species, including the zoonotic Langya virus, have revealed much higher antigenic diversity than currently characterized. Here, to explore the limits of structural and antigenic variation in HNVs, we construct an expanded, antigenically diverse panel of HNV fusion (F) and attachment (G) glycoproteins from 56 unique HNV strains that better reflects global HNV diversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!