Background: IgA nephropathy (IgAN) is the most frequent type of primary glomerulonephritis globally and the leading cause of end-stage renal disease in young adults. Its pathogenesis is not fully known, but is largely attributed to genetic factors. This study was aimed to explore the prognostic values of key genes in IgAN.

Methods: The gene expression profile GSE93798 of 20 IgAN samples and 22 normal samples using glomeruli from kidney biopsy was adopted. Totally 447 upregulated and 719 downregulated differentially expressed genes were found in IgAN patients on the R software. The Gene Ontology enrichment and the Kyoto Encyclopedia of Gene and Genomes pathway were investigated on DAVID, and the protein-protein interaction network and the top 13 hub genes of the differentially expressed genes were built via the plug-in molecular complex detection and cytoHubba of Cytoscape.

Results: From the protein-protein interaction network, of the top 13 hub genes, FOS, EGFR, SIRT1, ALB, TFRC, JUN, IGF1, HIF1A, and SOCS3 were upregulated, while CTTN, ACTR2, CREB1, and CTNNB1 were downregulated. The upregulated genes took part in the HIF-1 signaling pathway, Choline metabolism in cancer, Pathways in cancer, Amphetamine addiction, Estrogen, TNF, and FoxO signaling pathways, and Osteoclast differentiation, while the downregulated genes were involved in Pathogenic Escherichia coli infection, Bacterial invasion of epithelial cells, prostate cancer, and melanogenesis.

Conclusion: This study based on the Gene Expression Omnibus database updates the knowledge about the mechanism of IgAN and may offer new treatment targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386957PMC
http://dx.doi.org/10.1097/MD.0000000000021372DOI Listing

Publication Analysis

Top Keywords

genes
8
key genes
8
iga nephropathy
8
gene expression
8
differentially expressed
8
expressed genes
8
protein-protein interaction
8
interaction network
8
network top
8
top hub
8

Similar Publications

In acidic soil conditions, aluminium (Al) limits crop growth and yields but benefits the growth of tea plants. Flavonols are suggested to form complexes with Al, enhancing Al accumulation in tea plants. The role of flavonols in promoting lateral root formation under Al stress remains unclear.

View Article and Find Full Text PDF

sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato.

Plant Cell Environ

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.

Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy.

View Article and Find Full Text PDF

Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana.

Mol Hortic

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.

Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.

View Article and Find Full Text PDF

An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages.

Biol Direct

January 2025

Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Background: Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis.

Results: Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!