Purification, isolation, and structure characterization of water soluble and insoluble polysaccharides from Maitake fruiting body.

Int J Biol Macromol

State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

Published: December 2020

AI Article Synopsis

  • The crude polysaccharides (GFP) were extracted from the Maitake mushroom and purified using two chromatography methods, resulting in five main fractions labeled GFP-1 to GFP-5.
  • Free sugars, identified as glucose and trehalose, were isolated and analyzed through NMR, revealing predominant β-linkages in the polysaccharides.
  • The study indicated structural similarities between water soluble and water insoluble polysaccharides, suggesting that the soluble forms may originate from the breakdown of the cell wall.

Article Abstract

The crude polysaccharides (GFP) were isolated from the Maitake fruiting body (Grifola frondosa) and purified by DEAE Cellulose-52 ionic-exchange chromatography and Sephadex G-25 gel filtration chromatography in that order. Five main fractions, GFP-1 to GFP-5 were obtained through the isolation and purification steps. Free sugars were isolated by G-25 gel filtration chromatography and identified glucose and (α,α)-trehalose by nuclear magnetic resonance (NMR). GC-MS and methylation analysis that linkages were mainly β-1,3 and β-1,6, β-1,4 and β-1,2 bonds in WIP. Seven main oligomer products were detected and their structures characterized by mass spectrum. Experimental results shown the similarity in structure between water soluble polysaccharides (WSP) and water insoluble polysaccharides (WIP), thus WSP can be the product of cell wall by breakdown.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.08.037DOI Listing

Publication Analysis

Top Keywords

water soluble
8
insoluble polysaccharides
8
maitake fruiting
8
fruiting body
8
g-25 gel
8
gel filtration
8
filtration chromatography
8
purification isolation
4
isolation structure
4
structure characterization
4

Similar Publications

Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

Spontaneous Bubble Growth Inside High-Saturation-Vapor-Pressure and High-Air-Solubility Liquids and Emulsion Droplets.

Langmuir

January 2025

Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.

Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

Surface Modifications and Antifungal Efficacy of Origanum Oil Incorporation in Denture-based Materials: An Study.

J Contemp Dent Pract

September 2024

Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; Department of Dentistry, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands, ORCID: https://orcid.org/0000-0002-5166-8233.

Aim: This study aimed to assess if the addition of origanum oil to denture materials could decrease microorganisms counts and biofilm formation without changing their mechanical/surface properties.

Materials And Methods: A total of 66 resilient denture liner discs (SoftConfort, Dencril Comércio de Plásticos Ltda, SP, Brazil) were prepared with fixed dimensions of 10 × 3 mm for biofilm assay ( = 36) and 12 × 2 mm for sorption-solubility tests ( = 30) containing three oil concentrations - 0, 2.5 and 5%, thereby = 12 per each group samples for biofilm assay and = 10 per each group for sorption-solubility test respectively.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disease marked by increased amyloid-β (Aβ) deposition, tau hyperphosphorylation, impaired energy metabolism, and chronic ischemia-type injury. Cerebral microvascular dysfunction likely contributes to AD pathology, but its precise pathogenic role has been poorly defined.

Objective: To examine microvascular reactivity to endothelium-dependent vasodilators and small conductance calcium-activated potassium (SK) channel activity in an intracerebral streptozotocin (STZ)-induced AD mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!