Tubulin- and ROS-dependent antiproliferative mechanism of a potent analogue of noscapine, N-propargyl noscapine.

Life Sci

School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai 400098, India. Electronic address:

Published: October 2020

Aim: To rationally-design, synthesize, characterize, biologically evaluate, and to elucidate the anticancer mechanism of action of a novel analogue of noscapine, N-propargyl noscapine (NPN), as a potential drug candidate against triple-negative breast cancer (TNBC).

Materials And Methods: After the synthesis and IR, H, C NMR and mass spectral characterization of NPN, its antiproliferative efficacy against different cancer cell lines was investigated using Sulforhodamine B assay. Cell cycle progression was analysed using flow cytometry. The drug-tubulin interactions were studied using tryptophan-quenching assay, ANS-binding assay, and colchicine-binding assay. Immunofluorescence imaging was used to examine the effect of NPN on cellular microtubules. Levels of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and cell death were studied by staining the cells with DCFDA, Rhodamine 123, and acridine orange/ethidium bromide, respectively.

Key Findings: NPN strongly inhibited the viability (IC, 1.35 ± 0.2 μM) and clonogenicity (IC, 0.56 ± 0.06 μM) of the TNBC cell line, MDA-MB-231, with robust G/M arrest. In vitro, the drug bound to tubulin and disrupted the latter's structural integrity and promoted colchicine binding to tubulin. NPN triggered an unusual form of microtubule disruption in cells, repressed recovery of cold-depolymerized cellular microtubules and suppressed their dynamicity. These effects on microtubules were facilitated by elevated levels of ROS and loss of MMP.

Significance: NPN can be explored further as a chemotherapeutic agent against TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.118238DOI Listing

Publication Analysis

Top Keywords

analogue noscapine
8
noscapine n-propargyl
8
n-propargyl noscapine
8
cellular microtubules
8
ros loss
8
npn
6
tubulin- ros-dependent
4
ros-dependent antiproliferative
4
antiproliferative mechanism
4
mechanism potent
4

Similar Publications

Discovery of -Trifluoromethylated Noscapines as Novel and Potent Agents for the Treatment of Glioblastoma.

J Med Chem

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China.

The search for new and effective chemotherapeutic agents for the treatment of glioblastoma (GBM) represents an unmet need in drug discovery. Herein, a class of novel -trifluoromethylated noscapines has been disclosed. Among them, 9'-bromo--trifluoromethyl noscapine displayed superior anti-GBM potency.

View Article and Find Full Text PDF

In silico inspired design of urea noscapine congeners as anticancer agents: Chemical synthesis and experimental evaluation using breast cancer cells and a xenograft mouse model.

Eur J Med Chem

January 2025

Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, 768019, Odisha, India. Electronic address:

A series of semisynthetic noscapine-urea congeners (7a-7h) as potential tubulin-binding agents are being developed by integrating a urea pharmacophore at the C-9 position of the noscapine scaffold. Their binding affinity to tubulin was predicted through molecular docking, molecular dynamics (MD) simulations, and the MM-PBSA approach. These molecules were subsequently chemically synthesized and assessed using breast cancer cell lines (MCF-7 and MDA-MB-231) and normal human embryonic kidney cells (HEK).

View Article and Find Full Text PDF

Synthesis and modification of noscapine derivatives as promising future anticancer agents.

Bioorg Chem

December 2024

Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran. Electronic address:

Noscapine, a tetrahydroisoquinoline alkaloid, was first isolated from Papaver somniferum and identified by Rabiquet in 1817. It has been used as an anti-tussive agent since the mid-1950 s. After the discovery of its anti-mitotic potential, it was into the limelight once again.

View Article and Find Full Text PDF

Comparative assessment of 9-bromo noscapine ionic liquid and noscapine: Synthesis, in-vitro studies plus computational & biophysical evaluation with human hemoglobin.

Int J Biol Macromol

August 2023

Department of Chemistry, University of Delhi, Delhi 110007, India; Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India; Institute of Nano Medical Sciences, University of Delhi, Delhi 110007, India; Maharaja Surajmal Brij University, Rajasthan - 321201, India. Electronic address:

Noscapine is a proficient anticancer drug active against wide variety of tumors including lung cancer. Over time, several noscapine analogues have been assessed to maximize the efficiency of the drug, amongst which 9-bromo noscapine remains one of the most potent analogues till date. In the present work, we have synthesized 9-bromo noscapine ionic liquid [9-Br-Nos]IBr, an active pharmaceutical ingredient based ionic liquid (API-IL) to address the existing issues of solubility and targeted drug delivery in the parent alkaloid as well as the synthesized analogues.

View Article and Find Full Text PDF

As February 2023, SARS-CoV-2 is still infecting people and children worldwide. Cough and dyspnea are annoying symptoms almost present in a large proportion of COVID-19 outpatients, and the duration of these symptoms might be long enough to affect the patients' quality of life. Studies have shown positive effects for noscapine plus licorice in the previous COVID-19 trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!