The MICU1-MICU2 heterodimer regulates the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake. Herein, we present two crystal structures of the MICU1-MICU2 heterodimer, in which Ca -free and Ca -bound EF-hands are observed in both proteins, revealing both electrostatic and hydrophobic interfaces. Furthermore, we show that MICU1 interacts with EMRE, another regulator of MCU, through a Ca -dependent alkaline groove. Ca binding strengthens the MICU1-EMRE interaction, which in turn facilitates Ca uptake. Conversely, the MICU1-MCU interaction is favored in the absence of Ca , thus inhibiting the channel activity. This Ca -dependent switch illuminates how calcium signals are transmitted from regulatory subunits to the calcium channel and the transition between gatekeeping and activation channel functions. Furthermore, competition with an EMRE peptide alters the uniporter threshold in resting conditions and elevates Ca accumulation in stimulated mitochondria, confirming the gatekeeper role of the MICU1-MICU2 heterodimer. Taken together, these structural and functional data provide new insights into the regulation of mitochondrial calcium uptake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527922 | PMC |
http://dx.doi.org/10.15252/embj.2019104285 | DOI Listing |
Contact (Thousand Oaks)
January 2025
Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Doha, Qatar.
Membrane contact sites (MCS) provide specialized conduits for inter-organelle communications to maintain cellular homeostasis. Most organelles are interconnected, which supports their coordination and function. M-phase (mitosis or meiosis) is associated with dramatic cellular remodeling to support cell division, including the equal distribution of organelles to the two daughter cells.
View Article and Find Full Text PDFContact (Thousand Oaks)
January 2025
Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain.
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining tissue homeostasis by monitoring and responding to environmental changes through processes such as phagocytosis, cytokine production or synapse remodeling. Their dynamic nature and diverse functions are supported by the regulation of multiple metabolic pathways, enabling microglia to efficiently adapt to fluctuating signals. A key aspect of this regulation occurs at mitochondria-associated ER membranes (MAM), specialized contact sites between the ER and mitochondria.
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy.
Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.
View Article and Find Full Text PDFBiol Res
January 2025
Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!