Moving Immune Therapy Forward Targeting TME.

Physiol Rev

Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.

Published: April 2021

AI Article Synopsis

Article Abstract

The host immune system shapes the fate of tumor progression. Hence, manipulating patients' immune system to activate host immune responses against cancer pathogenesis is a promising strategy to develop effective therapeutic interventions for metastatic and drug-resistant cancers. Understanding the dynamic mechanisms within the tumor microenvironment (TME) that contribute to heterogeneity and metabolic plasticity is essential to enhance the patients' responsiveness to immune targeted therapies. Riera-Domingo et al. (Riera-Domingo C, Audige A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone, M. 100: 1-102, 2020) describe the immune landscape within the TME and highlight the significance of metabolic and hypoxic signatures that impact immune function and response to immunotherapy strategies. Current literature in this field confirms that targeting tumor metabolism and the acidic microenvironment commonly associated with tumors may present viable strategies to modulate the host immune system in favor of response to immune targeted therapies. However, development of better tools to understand tumor-immune interactions and identify mechanisms driving nonresponders, more innovative clinical trial design, and new therapies will need to be identified to move the field forward. Personalized immune therapies incorporating metabolic and microbiome-based gene signatures to influence the therapeutic response and novel methods to generate immunologically "hot" tumors are at the forefront of immunotherapy currently. The combination of these approaches with clinically approved immunotherapies will be valuable moving forward.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428923PMC
http://dx.doi.org/10.1152/physrev.00008.2020DOI Listing

Publication Analysis

Top Keywords

host immune
12
immune system
12
immune
9
immune targeted
8
targeted therapies
8
moving immune
4
immune therapy
4
therapy forward
4
forward targeting
4
targeting tme
4

Similar Publications

Acute Q Fever after Kidney Transplantation: A Case Report.

Br J Hosp Med (Lond)

January 2025

Department of Rheumatism and Immunity, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Patients receiving kidney transplant experience immunosuppression, which increases the risk of bacterial, viral, fungal, and parasitic infections. Q fever is a potentially fatal infectious disease that affects immunocompromised renal transplant recipients and has implications in terms of severe consequences for the donor's kidney. A patient with acute Q fever infection following kidney transplantation was admitted to the Tsinghua Changgung Hospital in Beijing, China, in March 2021.

View Article and Find Full Text PDF

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Interferon-Stimulated Genes and Immune Metabolites as Broad-Spectrum Biomarkers for Viral Infections.

Viruses

January 2025

Center for Virus-Host-Innate-Immunity, Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

The type I interferon (IFN-I) response is a critical component of the immune defense against various viral pathogens, triggering the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs encode proteins with diverse antiviral functions, targeting various stages of viral replication and restricting infection spread. Beyond their antiviral functions, ISGs and associated immune metabolites have emerged as promising broad-spectrum biomarkers that can differentiate viral infections from other conditions.

View Article and Find Full Text PDF

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!