Molecular liquids have long been known to undergo various distinct intermolecular motions, from fast librations and cage-rattling oscillations to slow orientational and translational diffusion. However, their resultant gigahertz to terahertz spectra are far from simple, appearing as broad shapeless bands that span many orders of magnitude of frequency, making meaningful interpretation troublesome. spectral line shape fitting has become a notoriously fine art in the field; a unified approach to handling such spectra is long overdue. Here we apply ultrafast optical Kerr-effect (OKE) spectroscopy to study the intermolecular dynamics of room-temperature -alkanes, cycloalkanes, and six-carbon rings, as well as liquid methane and propane. This work provides stress tests and converges upon an experimentally robust model across simple molecular series and range of temperatures, providing a blueprint for the interpretation of the dynamics of van der Waals liquids. This will enable the interpretation of low-frequency spectra of more complex liquids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7476039 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.0c03769 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Center for Bioinspired Science and Technology, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115.
Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Physics and Electronic-information Engineering, Hubei Engineering University, Xiaogan 432000, China.
In this article, we present a terahertz (THz) metamaterial absorber that blends two types of coordinated materials: Dirac semimetals and vanadium dioxide. Compared to other absorbers on the market, which are currently non-adjustable or have a single adjustment method, our absorber is superior because it has two coordinated modes with maximum adjustment ranges of 80.7% and 0.
View Article and Find Full Text PDFAppl Spectrosc
November 2024
Donostia International Physics Center (DIPC), San Sebastián, Spain.
Phys Rev Lett
October 2024
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands.
Surface plasmons in two-dimensional (2D) electron systems have attracted great attention for their promising light-matter applications. However, the excitation of a surface plasmon, in particular, transverse-electric (TE) surface plasmon, remains an outstanding challenge due to the difficulty to conserve energy and momentum simultaneously in the normal 2D materials. Here we show that the TE surface plasmons ranging from gigahertz to terahertz regime can be effectively excited and manipulated in a hybrid dielectric, 2D material, and magnet structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!