Deep eutectic solvents (DESs) are the new class of green and inexpensive anhydrous solvents, which are alternatives of ionic liquids. The applications of these promising anhydrous sustainable solvents in biological media have been explored. However, the behavior and stability of biomolecules in DES are not clearly understood. In this study, we have investigated the stability of Trp-cage mini-protein in glyceline, which is a natural deep eutectic mixture (NADES) of choline chloride and glycerol. A series of all-atom molecular dynamics at different temperatures are carried out, and it is found that the protein is stable at much higher temperatures in a DES solvent than in water medium. It is observed that at 400 K this protein denatures from its native state in water medium whereas it retains its native structure up to 400 K temperature in DES medium. Through various analyses, it is also noticed that the interaction between the protein and the glycerol and the choline molecules decreases with the increase in temperature from 300 to 400 K. The crucial parameters, which help in the stabilization of the folded conformation of Trp-cage mini-protein, are maintained in glyceline up to a temperature of 400 K, but they disintegrate at 450 K. The low diffusion coefficient of the glyceline molecules helps to maintain the folded conformation of Trp-cage, which increases at high temperature, causing distortion in the stable interactions between the mini-protein and the solvent molecules. This ultimately leads to the unfolding of the mini-protein. Since Trp-cage mini-protein is a prototypical protein, the thermal stability of this protein in this NADES proves this solvent as an ideal medium for biocatalytic reactions and long-time storage of biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c03501DOI Listing

Publication Analysis

Top Keywords

trp-cage mini-protein
16
deep eutectic
12
natural deep
8
thermal stability
8
stability trp-cage
8
water medium
8
folded conformation
8
conformation trp-cage
8
mini-protein
6
trp-cage
5

Similar Publications

Opposing roles of organic salts on mini-protein structure.

Phys Chem Chem Phys

March 2024

Fischell Department of Bioengineering, University of Maryland, College Park, USA.

We investigated the effects of 1-ethyl-3-methylimidazolium chloride ([EMIM][Cl]) and choline chloride ([Chol][Cl]) on the local environment and conformational landscapes of Trp-cage and Trpzip4 mini-proteins using experimental and computational approaches. Fluorescence experiments and computational simulations revealed distinct behaviors of the mini-proteins in the presence of these organic salts. [EMIM][Cl] showed a strong interaction with Trp-cage, leading to fluorescence quenching and destabilization of its native structural interactions.

View Article and Find Full Text PDF

Collective variable (CV)-based enhanced sampling techniques are widely used today for accelerating barrier-crossing events in molecular simulations. A class of these methods, which includes temperature accelerated molecular dynamics (TAMD)/driven-adiabatic free energy dynamics (d-AFED), unified free energy dynamics (UFED), and temperature accelerated sliced sampling (TASS), uses an extended variable formalism to achieve quick exploration of conformational space. These techniques are powerful, as they enhance the sampling of a large number of CVs simultaneously compared to other techniques.

View Article and Find Full Text PDF

AlphaFold is a neural network-based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue-residue distances.

View Article and Find Full Text PDF

Recently, we have shown that the residue folding degree, a network-based measure of folded content in proteins, is able to capture backbone conformational transitions related to the formation of secondary structures in molecular dynamics (MD) simulations. In this work, we focus primarily on developing a collective variable (CV) for MD based on this residue-bound parameter to be able to trace the evolution of secondary structure in segments of the protein. We show that this CV can do just that and that the related energy profiles (potentials of mean force, PMF) and transition barriers are comparable to those found by others for particular events in the folding process of the model mini protein Trp-cage.

View Article and Find Full Text PDF

Methods that combine collective variable (CV) based enhanced sampling and global tempering approaches are used in speeding-up the conformational sampling and free energy calculation of large and soft systems with a plethora of energy minima. In this paper, a new method of this kind is proposed in which the well-sliced metadynamics approach (WSMTD) is united with replica exchange with solute tempering (REST2) method. WSMTD employs a divide-and-conquer strategy wherein high-dimensional slices of a free energy surface are independently sampled and combined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!