The dynamics of proton transfer to the aprotic solvent 1-methylimidazole (MeIm, proton acceptor) from the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) was investigated using fast fluorescence measurements. The closely related molecule, 8-methoxypyrene-1,3,6-trisulfonic acid trisodium salt (MPTS), which is not a photoacid, was also studied for comparison. Following optical excitation, the wavelength-dependent population dynamics of HPTS in MeIm resulting from the deprotonation process were collected over the entire fluorescence emission window. Analysis of the time-dependent fluorescence spectra revealed four distinct fluorescence bands that appear and decay on different time scales. We label these four states as protonated (P), associated I (A), associated II (A), and deprotonated (D). We find that the simple kinetic scheme of P → A → A → D is not consistent with the data. Instead, the kinetic scheme that describes the data has P decaying into A, which mainly goes on to deprotonation (D), but A can also feed into A. A can return to A or decay to the ground state, but does not deprotonate within experimental error. Quantum chemistry and excited state QM/MM Born-Oppenheimer molecular dynamics simulations indicate that A and A are two H-bonding conformations of MeIm to the HPTS hydroxyl, axial, and equatorial, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c05525DOI Listing

Publication Analysis

Top Keywords

proton transfer
8
solvent 1-methylimidazole
8
acid trisodium
8
trisodium salt
8
kinetic scheme
8
→ →
8
proton
4
dynamics
4
transfer dynamics
4
dynamics aprotic
4

Similar Publications

Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.

View Article and Find Full Text PDF

An understanding of proton transfer and migration at the surfaces of solid metal oxides and related molecular polyoxometalates (POMs) and metal alkoxides is crucial for the development of reactivity involving protonation or the absorption/binding of water. In this work, the hydrolysis of alkoxido Ti- and Sn-substituted Lindqvist [(MeO)MWO] (M = Ti, ; M = Sn, ) and Keggin [(MeO)MPWO] (M = Ti, ; M = Sn, ) type polyoxometalates (POMs) to hydroxido derivatives and subsequent condensation to μ-oxido species has been investigated in detail to provide insight into proton transfer reactions in these molecular metal oxide systems. Solution NMR studies revealed the dependence of reactions not only on the nature of the heteroatom (Ti or Sn) but also on the type of lacunary (W or PW) POM and also on the solvent (MeCN or DMSO).

View Article and Find Full Text PDF

The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.

View Article and Find Full Text PDF

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!