A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistical Inference of Transport Mechanisms and Long Time Scale Behavior from Time Series of Solute Trajectories in Nanostructured Membranes. | LitMetric

Appropriate time series modeling of complex diffusion in soft matter systems on the microsecond time scale can provide a path toward inferring transport mechanisms and predicting bulk properties characteristic of much longer time scales. In this work we apply nonparametric Bayesian time series analysis, more specifically the sticky hierarchical Dirichlet process autoregressive hidden Markov model (HDP-AR-HMM) to solute center-of-mass trajectories generated from long molecular dynamics (MD) simulations in a cross-linked inverted hexagonal phase lyotropic liquid crystal (LLC) membrane in order to automatically detect a variety of solute dynamical modes. We can better understand the mechanisms controlling these dynamical modes by grouping the states identified by the HDP-AR-HMM into clusters based on multiple metrics aimed at distinguishing solute behavior based on their fluctuations, dwell times in each state, and positions within the inhomogeneous membrane structure. We analyze predominant clusters in order to relate their dynamical parameters to physical interactions between solutes and the membrane. Along with parameters of individual states, the HDP-AR-HMM simultaneously infers a transition matrix which allows us to stochastically propagate solute behavior from all of the independent trajectories onto arbitrary length time scales while still preserving the qualitative behavior characteristic of the MD trajectories. This affords a direct connection to important macroscopic observables used to characterize performance like solute flux and selectivity. This work provides a promising way to simultaneously identify transport mechanisms in nanoporous materials and project complex diffusive behavior on long time scales. Our enhanced understanding of the diverse range of solute behavior allows us to hypothesize design changes to LLC monomers aimed toward controlling the rates of solute passage, thus improving the selective performance of LLC membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c05010DOI Listing

Publication Analysis

Top Keywords

transport mechanisms
12
time series
12
time scales
12
solute behavior
12
time
8
long time
8
time scale
8
solute
8
dynamical modes
8
behavior
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!