Epilepsy is one of the most common diseases of the central nervous system. Recent studies have shown that a variety of inflammatory mediators play a key role in the pathogenesis of the disease. Ibuprofen (IBP) is a well-known anti-inflammatory agent that reduces the neuroinflammatory response and neuronal damage. In this study, we examined the effect of IBP in a rat model of pentylenetetrazol (PTZ)-induced chronic epilepsy. PTZ injection was given a total of 15 times on alternate days (over a period of 29 days) to induce epilepsy. The effects of IBP were evaluated by behavioral observation, EEG recording, Nissl staining, immunohistochemistry, Western blot analysis, and electrophysiological recording. The results showed that IBP alone affected the expression of cyclooxygenase-2 (COX-2) and neuronal excitability but did not cause epilepsy. IBP reduced seizure scores in the PTZ-treated rats, and it minimized the loss of hippocampal neurons. In addition, IBP decreased the secretion of COX-2, inhibited the activation of the NOD-like receptor 3 inflammasome, and reduced the secretion of the inflammatory cytokine interleukin-18. Furthermore, the results of whole-cell patch-clamp revealed that IBP affected action potential properties, including frequency, latency and duration in epileptic rats, suggesting that it may impact neuronal excitability. These effects of IBP may underlie its antiepileptic and neuroprotective actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-020-03109-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!