Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Since 2017, there have been several reports of artificial intelligence (AI) achieving comparable performance to human experts on medical image analysis tasks. With the first ratification of a computer vision algorithm as a medical device in 2018, the way was paved for these methods to eventually become an integral part of modern clinical practice.
Objectives: The purpose of this article is to review the main developments that have occurred over the last few years in AI for image analysis, in relation to clinical applications and dermatology.
Materials And Methods: Following the annual ImageNet challenge, we review classical methods of machine learning for image analysis and demonstrate how these methods incorporated human expertise but failed to meet industrial requirements regarding performance and scalability. With the rise of deep learning based on artificial neural networks, these limitations could be overcome. We discuss important aspects of this technology including transfer learning and report on recent developments such as explainable AI and generative models.
Results: Deep learning models achieved performance on a par with human experts in a broad variety of diagnostic tasks and were shown to be suitable for industrialization. Therefore, current developments focus less on further improving accuracy but rather address open issues such as interpretability and applicability under clinical conditions. Upcoming generative models allow for entirely new applications.
Conclusions: Deep learning has a history of remarkable success and has become the new technical standard for image analysis. The dramatic improvement these models brought over classical approaches enables applications in a rapidly increasing number of clinical fields. In dermatology, as in many other domains, artificial intelligence still faces considerable challenges but is undoubtedly developing into an essential tool of modern medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00105-020-04663-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!