A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. | LitMetric

The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2.

Nucleic Acids Res

Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Published: September 2020

The NAD+-dependent deacetylase and mono-ADP-ribosyl transferase SIRT6 stabilizes the genome by promoting DNA double strand break repair, thereby acting as a tumor suppressor. However, whether SIRT6 regulates nucleotide excision repair (NER) remains unknown. Here, we showed that SIRT6 was recruited to sites of UV-induced DNA damage and stimulated the repair of UV-induced DNA damage. Mechanistic studies further indicated that SIRT6 interacted with DDB2, the major sensor initiating global genome NER (GG-NER), and that the interaction was enhanced upon UV irradiation. SIRT6 deacetylated DDB2 at two lysine residues, K35 and K77, upon UV stress and then promoted DDB2 ubiquitination and segregation from chromatin, thereby facilitating downstream signaling. In addition, we characterized several SIRT6 mutations derived from melanoma patients. These SIRT6 mutants ablated the stimulatory effect of SIRT6 on NER and destabilized the genome due to (i) partial loss of enzymatic activity (P27S or H50Y), (ii) a nonsense mutation (R150*) or (iii) high turnover rates (G134W). Overall, we demonstrate that SIRT6 promotes NER by deacetylating DDB2, thereby preventing the onset of melanomagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498349PMC
http://dx.doi.org/10.1093/nar/gkaa661DOI Listing

Publication Analysis

Top Keywords

uv-induced dna
12
dna damage
12
sirt6
9
sirt6 promotes
8
repair uv-induced
8
ddb2
5
deacetylase sirt6
4
repair
4
promotes repair
4
dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!