We have investigated the self-assembly of a strong dipolar molecule (LDipCC) on the semiconducting Si(111)-B surface with scanning tunneling microscopy (STM), density functional theory (DFT) calculations and STM simulations. Although the formation of an extended two-dimensional network was clearly revealed by STM under ultra-high vacuum, the assignment of a specific STM signature to the different terminal groups from the LDipCC molecular unit required a complete analysis by numerical simulations. The overall observed assembly is explained in terms of STM contrasts associated with the molecular structure of LDipCC and the molecule-surface interactions. To distinguish the relative arrangement of the dipolar molecules within the assembly, a rational combination of experimental results and electronic structure calculations allows us to identify a single adsorbed LDipCC phase in which the molecular dipoles are homogeneously arranged into a parallel fashion on the Si(111)-B surface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr03372cDOI Listing

Publication Analysis

Top Keywords

si111-b surface
12
stm
5
large-extended supramolecular
4
supramolecular network
4
network dipoles
4
dipoles parallel
4
parallel arrangement
4
arrangement si111-b
4
surface investigated
4
investigated self-assembly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!