Aim: The traditional hinge axis theory of temporomandibular joint (TMJ) dynamics is increasingly being replaced by the theory of instantaneous centers of rotation (ICR). Typically, ICR determinations are based on theoretical calculations or three-dimensional approximations of finite element models.

Materials And Methods: With the advent of real-time magnetic resonance imaging (MRI), natural physiologic movements of the TMJ may be visualized with 15 frames per second. The present study employs real-time MRI to analyze the TMJ biomechanics of healthy volunteers during mandibular movements, with a special emphasis on horizontal condylar inclination (HCI) and ICR pathways. The Wilcoxon rank sum test was used to comparatively analyze ICR pathways of mandibular opening and closure.

Results: Mean HCI was 34.8 degrees (± 11.3 degrees) and mean mandibular rotation was 26.6 degrees (± 7.2 degrees). Within a mandibular motion of 10 to 30 degrees, the resulting x- and y-translation during opening and closure of the mandible differed significantly (10 to 20 degrees, x: P = 0.02 and y: P < 0.01; 20 to 30 degrees, x: P < 0.001 and y: P = 0.01). Rotation of both 0 to 10 degrees and > 30 degrees showed no significant differences in x- and y-translation. Near occlusion movements differed only for y-translation (P < 0.01).

Conclusion: Real-time MRI facilitates the direct recording of TMJ structures during physiologic mandibular movements. The present findings support the theory of ICR. Statistics confirmed that opening and closure of the mandible follow different ICR pathways, which might be due to muscular activity discrepancies during different movement directions. ICR pathways were similar within maximum interincisal distance (MID) and near occlusion (NO), which might be explained by limited extensibility of tissue fibers (MID) and tooth contact (NO), respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

icr pathways
16
degrees
9
temporomandibular joint
8
real-time magnetic
8
magnetic resonance
8
resonance imaging
8
real-time mri
8
mandibular movements
8
degrees mandibular
8
degrees degrees
8

Similar Publications

Covalent Plant Natural Product that Potentiates Antitumor Immunity.

J Am Chem Soc

January 2025

Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan.

Despite the unprecedented therapeutic potential of immune checkpoint antibody therapies, their efficacy is limited partly by the dysfunction of T cells within the cancer microenvironment. Combination therapies with small molecules have also been explored, but their clinical implementation has been met with significant challenges. To search for antitumor immunity activators, the present study developed a cell-based system that emulates cancer-attenuated T cells.

View Article and Find Full Text PDF

High fructose levels inhibit the proliferation of cardiomyocytes via the Notch1 signaling pathway.

Cell Signal

January 2025

Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325038, Zhejiang, China; Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:

Fructose, as a natural and simple sugar, is not significantly harmful to the human body when consumed in moderation and can provide energy for the body. High-fructose diets have been linked to an increased risk of a range of metabolic disorders, including hypertriglyceridemia, hypertension, and diabetes mellitus. These conditions are known to be associated with an elevated risk of developing cardiometabolic diseases.

View Article and Find Full Text PDF

Photic versus aphotic production of organohalogens from native versus invasive wetland plants-derived dissolved organic matter.

Water Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:

Article Synopsis
  • The study explores the less understood process of natural organohalogen formation in dark conditions (aphotic) compared to more well-known light-driven (photochemical) processes, particularly focusing on two types of dissolved organic matter (DOM) from wetland plants.
  • It finds that the invasive plant Spartina alterniflora (SA-DOM) is more prone to photochemical halogenation due to its higher aromatic content, while Phragmites australis (PA-DOM) produces more natural organohalogens (NOHs) during dark reactions.
  • The research highlights the importance of dissolved oxygen levels and suggests that both photochemical and aphotic pathways contribute significantly to NOH formation, making them relevant under varying environmental conditions.
View Article and Find Full Text PDF

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with OH/O via Molecular Signatures.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.

View Article and Find Full Text PDF

Preliminary Study on the Positive Expression Regulation of Alpha2-Macroglobulin in the Testicular Tissue of Male Mice by Environmental Estrogens.

Int J Mol Sci

December 2024

The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.

The male reproductive impairment caused by environmental estrogens (EEs) stands as a pivotal research area in environmental toxicology. Alpha2-macroglobulin (A2M) emerges as a promising molecule capable of counteracting oxidative stress induced by EEs. This study conducted exposure experiments spanning PND1 to PND56 employing ICR mice, aiming to delve into the expression patterns of A2M and its modulated IL-6 in the testicular tissue of mice subsequent to diethylstilbestrol (DES) and benzophenone (BP) exposure, while elucidating the pivotal role of ERs in this intricate process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!