We demonstrated a single-shot, multispectral birefringence mapping by use of a supercontinuum (SC) vector beam. The vector beam, which was generated by a pair of axially symmetric wave plates, leads to angular-variant polarization modulation to divide birefringence properties of a sample substrate into Fourier space. This strategy allows multispectral birefringence mapping from a single-shot image captured by a multispectral imaging detector. For SC vector beam analysis, we also compensated the retardance error of the axially symmetric wave plate in the superbroadband spectrum. Resolutions of retardance and azimuthal angle were 0.4° and 0.2°, respectively, and the spatial resolution was 60 µm. Those results are expected to provide us a single-shot, multispectral birefringence mapping with high spatial resolution as compared with using a scanning laser microscope. Our proposal has extendibility to develop high-speed, high-resolution birefringence imaging spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.393419DOI Listing

Publication Analysis

Top Keywords

multispectral birefringence
16
birefringence mapping
16
single-shot multispectral
12
vector beam
12
mapping supercontinuum
8
supercontinuum vector
8
axially symmetric
8
symmetric wave
8
spatial resolution
8
birefringence
6

Similar Publications

Robust and Versatile Biodegradable Unclonable Anti-Counterfeiting Labels with Multi-Mode Optical Encoding Using Protein-Mediated Luminescent Calcite Signatures.

Adv Mater

December 2024

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.

Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility.

View Article and Find Full Text PDF

Snapshot Multi-Wavelength Birefringence Imaging.

Sensors (Basel)

August 2024

Engineering and Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, North University of China, Taiyuan 030051, China.

A snapshot multi-wavelength birefringence imaging measurement method was proposed in this study. The RGB-LEDs at wavelengths 463 nm, 533 nm, and 629 nm were illuminated with circularly polarized light after passing through a circular polarizer. The transmitted light through the birefringent sample was captured by a color polarization camera.

View Article and Find Full Text PDF

Many optical techniques have been used in various diagnostics and biomedical applications since a decade and polarization imaging is one of the non-invasive and label free optical technique to investigate biological samples making it an important tool in diagnostics, biomedical applications. We report a multispectral polarization-based imaging of oral tissue by utilizing a polarization microscope system with a broadband-light source. Experiments were performed on oral tissue samples and multispectral Stokes mapping was done by recording a set of intensity images.

View Article and Find Full Text PDF

The minimum histological criterion for the diagnostics of Alzheimer's disease (AD) in tissue is the presence of senile plaques and neurofibrillary tangles in specific brain locations. The routine procedure of morphological analysis implies time-consuming and laborious steps including sectioning and staining of formalin-fixed paraffin-embedded (FFPE) tissue. We developed a multispectral Stokes polarimetric imaging approach that allows characterization of FFPE brain tissue samples to discern the stages of AD progression without sectioning and staining the tissue.

View Article and Find Full Text PDF

A multispectral-sensor-based colorimetric reader for biological assays.

Rev Sci Instrum

June 2021

Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA.

Tests that depend on changes in color are commonly used in biosensing. Here, we report on a colorimetric reader for such applications. The device is simple to construct and operate, making it ideal for research laboratories with limited resources or skilled personnel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!