We present a novel concept for a Thomson scattering diagnostic, based on a high-speed fiber optic spectrometer. The high-speed fiber optic spectrometer presented here translates a spectral measurement from the frequency domain into the time domain, thus requiring the use of only a single photodetector for spectral acquisition. The high temporal precision offered by the instrument gives rise to a number of advantages over traditional spectrometers, such as nearly background-free measurements and multiple uses of the same injected beam. Multiple uses of the same beam would enable greatly increased measurement rates, in the range of 10-100 MHz. The spectral range and resolution of the fiber spectrometer can be easily tailored to be optimized for the light source and experimental conditions by selecting different lengths of fiber, thus allowing for the proposed technique to exhibit high dynamic range when measuring many points simultaneously. Finally, due to the temporal separation of the background from the signal, these improvements are possible without the need for increased average input laser power.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.397599DOI Listing

Publication Analysis

Top Keywords

thomson scattering
8
high-speed fiber
8
fiber optic
8
optic spectrometer
8
high-speed fiber-based
4
spectrometer
4
fiber-based spectrometer
4
spectrometer plasma
4
plasma thomson
4
scattering novel
4

Similar Publications

A method to determine electron temperature within a plasma by the spectral analysis of atomic tungsten emission has been explored. The technique was applied to a post-discharge region immediately following a high voltage nanosecond pulsed discharge in air with tungsten electrodes. Atomic tungsten lines are readily observed in the weak emission spectrum within the post-discharge region for many microseconds.

View Article and Find Full Text PDF

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF

The individual polarization components of nonlinear Thomson scattering arise from the separate dimensions of electron figure-8 motion caused by a linearly polarized laser field. We present the first measurements of nonlinear Thomson scattering in both emission hemispheres. In the electron average rest frame, the shape of the electron figure-8 path is symmetric about the laser polarization dimension.

View Article and Find Full Text PDF

In the "method of four coefficients," electrical resistivity (ρ), Seebeck coefficient (S), Hall coefficient (RH), and Nernst coefficient (Q) of a material are measured and typically fit or modeled with theoretical expressions based on Boltzmann transport theory to glean experimental insights into features of electronic structure and/or charge carrier scattering mechanisms in materials. Although well-defined and readily available reference materials exist for validating measurements of ρ and S, none currently exists for RH or Q. We show that measurements of all four transport coefficients-ρ, S, RH, and Q-can be validated using a single reference sample, namely, the low-temperature Seebeck coefficient Standard Reference Material® (SRM) 3451 (composition Bi2Te3+x) available from the National Institute for Standards and Technology (NIST) without the need for inter-laboratory sample exchange.

View Article and Find Full Text PDF

A new thermal helium beam diagnostic has been implemented in the outer lower divertor of the ASDEX Upgrade tokamak. The purpose of this diagnostic is to measure two-dimensional profiles of electron density (ne) and temperature (Te) with high temporal and spatial resolution. The geometry of the lines of sight is chosen to avoid the influence of prompt recycling and to optimize the resolution without significantly impacting the divertor structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!