Pockels-based Mueller polarimetry is presented as a novel diagnostic technique for studying time and space-resolved and in-situ the interaction between an organic sample (a layer of onion cells) and non-thermal atmospheric pressure plasma. The effect of plasma is complex, as it delivers electric field, radicals, (UV) radiation, non-uniform in time nor in space. This work shows for the first time that the plasma-surface interaction can be characterized through the induced electric field in an electro-optic crystal (birefringence caused by the Pockels effect) while at the same moment the surface evolution of the targeted sample is monitored (depolarization) which is attached to the crystal. As Mueller polarimetry allows for separate detection of depolarization and birefringence, it is possible to decouple the entangled effects of the plasma. In the sample three spatial regions are identified where the surface evolution of the sample differs. This directly relates to the spatial in-homogeneity of the plasma at the surface characterized through the detected electric field. The method can be applied in the future to investigate plasma-surface interactions for various targets ranging from bio-films, to catalytic surfaces and plastics/polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423608PMC
http://dx.doi.org/10.1038/s41598-020-70452-wDOI Listing

Publication Analysis

Top Keywords

electric field
16
organic sample
8
mueller polarimetry
8
surface evolution
8
sample
5
plasma
5
in-situ monitoring
4
monitoring organic
4
electric
4
sample electric
4

Similar Publications

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

The paper presents a new sensor-less voltage and frequency control method for a stand-alone doubly-fed induction generator (DFIG) feeding an isolated load. The proposed control approach directly regulates the magnitude and angle of the rotor-flux vector rather than controlling rotor currents or voltages as in classic field oriented control (FOC). To accurately regulate the magnitude and frequency of stator voltage, two separate closed-loop based PI regulators are employed to evaluate the reference signals of the rotor flux vector magnitude and angle, respectively.

View Article and Find Full Text PDF

Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.

View Article and Find Full Text PDF

An agrivoltaic system (AVS), wherein crops and electricity are simultaneously produced on the same agricultural land, contributes to renewable energy production and food security. AVS is expected to expand energy production in rural areas; however, its energy balance has not been comprehensively investigated. In this study, the energy balance of an AVS established in 2021 in the paddy fields on Shonai Plain was determined.

View Article and Find Full Text PDF

Magnetic field-oriented conductive decellularized extracellular matrix hydrogel synergizes with electrical stimulation to promote spinal cord injury repair and electrophysiological function restoration.

Biomater Adv

December 2024

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:

Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!