Deletion of Krüppel-like factor-4 promotes axonal regeneration in mammals.

Neural Regen Res

Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu Province, China.

Published: January 2021

AI Article Synopsis

  • Axonal regeneration is crucial for recovery after nervous system damage, but is often limited in mammals; recent research shows that deleting the Klf4 gene can boost this regeneration process.
  • In a mouse model of sciatic nerve injury, reduced Klf4 expression was linked to enhanced healing in sensory neurons, both in lab experiments and live subjects.
  • Additionally, knocking out Klf4 in the cortex improved the regeneration of the corticospinal tract, suggesting that manipulating KLF4 could be a viable approach to support recovery from nerve injuries.

Article Abstract

Axonal regeneration plays an important role in functional recovery after nervous system damage. However, after axonal injury in mammals, regeneration is often poor. The deletion of Krüppel-like factor-4 (Klf4) has been shown to promote axonal regeneration in retinal ganglion cells. However, the effects of Klf4 deletion on the corticospinal tract and peripheral nervous system are unknown. In this study, using a mouse model of sciatic nerve injury, we show that the expression of Klf4 in dorsal root ganglion sensory neurons was significantly reduced after peripheral axotomy, suggesting that the regeneration of the sciatic nerve is associated with Klf4. In vitro, dorsal root ganglion sensory neurons with Klf4 knockout exhibited significantly enhanced axonal regeneration. Furthermore, the regeneration of the sciatic nerve was enhanced in vivo following Klf4 knockout. Finally, AAV-Cre virus was used to knockout the Klf4 gene in the cortex. The deletion of Klf4 enhanced regeneration of the corticospinal tract in mice with spinal cord injury. Together, our findings suggest that regulating KLF4 activity in neurons is a potential strategy for promoting axonal regeneration and functional recovery after nervous system injury. This study was approved by the Animal Ethics Committee at Soochow University, China (approval No. SUDA20200316A01).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818869PMC
http://dx.doi.org/10.4103/1673-5374.286978DOI Listing

Publication Analysis

Top Keywords

axonal regeneration
20
nervous system
12
sciatic nerve
12
regeneration
9
klf4
9
deletion krüppel-like
8
krüppel-like factor-4
8
functional recovery
8
recovery nervous
8
corticospinal tract
8

Similar Publications

Tissue engineering research for neurological applications has demonstrated that biomaterial-based structural bridges present a promising approach for promoting regeneration. This is particularly relevant for penetrating traumatic brain injuries, where the clinical prognosis is typically poor, with no available regeneration-enhancing therapies. Specifically, repurposing clinically approved biomaterials offers many advantages (reduced approval time and achieving commercial scaleup for clinical applications), highlighting the need for detailed screening of potential neuromaterials.

View Article and Find Full Text PDF

Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury.

Ageing Res Rev

December 2024

Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China. Electronic address:

Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life.

View Article and Find Full Text PDF

Nitric Oxide-Releasing Mesoporous Hollow Cerium Oxide Nanozyme-Based Hydrogel Synergizes with Neural Stem Cell for Spinal Cord Injury Repair.

ACS Nano

December 2024

Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.

View Article and Find Full Text PDF

Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies.

CNS Neurosci Ther

December 2024

Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China.

Article Synopsis
  • Spinal cord injury (SCI) is a major neurological disorder causing serious motor, sensory, and autonomic issues, primarily due to poor axon regeneration and remyelination.
  • Recent research highlights new therapeutic strategies that target key molecules and pathways to enhance myelin repair in SCI, using both lab and animal studies.
  • The review emphasizes the challenges in applying these findings to clinical settings, focusing on safety and delivery methods, while positing targeted remyelination therapies as a hopeful treatment approach for SCI.
View Article and Find Full Text PDF

Background: Mild traumatic brain injury (mTBI) frequently results in persistent cognitive, emotional, and functional impairments, closely linked to disruptions in the default mode network (DMN). Understanding the mechanisms driving these network abnormalities is critical for advancing diagnostic and therapeutic strategies.

Methods: This study adopted a multimodal approach, combining functional connectivity (FC) analysis, diffusion tensor imaging (DTI), and gene expression profiling to investigate DMN disruptions in mTBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!