The exceedingly narrow synaptic cleft (<20 nm) and adjacent perisynaptic extracellular space contain an astonishing array of secreted and membrane-anchored glycoproteins. A number of these extracellular molecules regulate intercellular -synaptic signaling by binding to ligands, acting as co-receptors or modulating ligand-receptor interactions. Recent work has greatly expanded our understanding of extracellular proteoglycan and glycan-binding lectin families as key regulators of intercellular signaling at the synapse. These secreted proteins act to regulate the compartmentalization of glycoprotein ligands and receptors, crosslink dynamic extracellular and cell surface lattices, modulate both exocytosis and endocytosis vesicle cycling, and control postsynaptic receptor trafficking. Here, we focus closely on the glutamatergic neuromuscular junction (NMJ) as a model synapse for understanding extracellular roles of the many heparan sulfate proteoglycan (HSPG) and lectin proteins that help determine synaptic architecture and neurotransmission strength. We particularly concentrate on the roles of extracellular HSPGs and lectins in controlling -synaptic signaling, especially that mediated by the Wnt and BMP pathways. These signaling mechanisms are causally linked to a wide spectrum of neurological disease states that impair coordinated movement and cognitive functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438005 | PMC |
http://dx.doi.org/10.1242/jcs.244186 | DOI Listing |
BMC Pulm Med
January 2025
Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
Bioorg Med Chem
December 2024
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Sci Rep
December 2024
Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.
The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.
View Article and Find Full Text PDFMol Neurodegener
December 2024
German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, UK.
Heparan sulfate (HS), a sulfated linear carbohydrate that decorates the cell surface and extracellular matrix, is a key regulator of biological processes. Owing to the inherent structural complexity of HS, structure-to-function studies with its ligands are required, and materials to improve the understanding of such interactions are therefore of high importance. Herein, the synthesis of novel -linked GlcN-α(1→4)-GlcA disaccharide building blocks is detailed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!