A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel missense mutation of RPGR identified from retinitis pigmentosa affects splicing of the ORF15 region and causes loss of transcript heterogeneity. | LitMetric

A novel missense mutation of RPGR identified from retinitis pigmentosa affects splicing of the ORF15 region and causes loss of transcript heterogeneity.

Biochem Biophys Res Commun

Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Guangdong Institute of Applied Biological Resources, Jiangnan University, Wuxi, Jiangsu, China; Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China. Electronic address:

Published: October 2020

Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, are the major cause of X-linked retinitis pigmentosa (RP), in which exon open reading frame 15 (ORF15) of RPGR has been implicated to play a substantial role. We identified a novel hemizygous missense mutation E585K of RPGR from whole-exome sequencing of RP. RNA-Seq analysis and functional study were conducted to investigate the underlying pathogenic mechanism of the mutation. Our results showed that the mutation actually affected RPGR ORF15 splicing. RNA-Seq analysis of the human retina followed by validation in cells revealed a complex splicing pattern near the 3' boundary of RPGR exon 14 in the ORF15 region, resulting from a variety of alternative splicing events (ASEs). The wildtype RPGR mini-gene expressed in human 293T cells confirmed these ASEs in vitro. In contrast, without new RNA species detected, the mutant mini-gene disrupted the splicing pattern of the ORF15 region, and caused loss of RPGR transcript heterogeneity. The RNA species derived from the mutant mini-gene were predominated by a minor out-of-frame transcript that was also observed in wildtype RPGR, resulting from an upstream alternative 5' splice site in exon 14. Our findings therefore provide insights into the influence of RPGR exonic mutations on alternative splicing of the ORF15 region, and the underlying molecular mechanism of RP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.06.109DOI Listing

Publication Analysis

Top Keywords

orf15 region
16
retinitis pigmentosa
12
rpgr
10
missense mutation
8
mutation rpgr
8
splicing orf15
8
transcript heterogeneity
8
rna-seq analysis
8
splicing pattern
8
alternative splicing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!