Triplet energy transfer between inorganic quantum dots (QDs) and organic materials plays a fundamental role in many optoelectronic applications based on these nanocomposites. Attaching organic molecules to the QD as transmitter ligands has been shown to facilitate transfer both to and from QDs. Here we show that the often disregarded thiol anchoring group can achieve quantitative triplet energy transfer yields in a PbS QD system with 6,11-bis[(triisopropylsilyl)ethynyl]tetracene-2-methylthiol (TET-SH) ligands. We demonstrate efficient triplet transfer in a singlet fission-based photon multiplication system with 5,12-bis[(triisopropylsilyl)ethynyl]tetracene generating triplets in solution that transfer to the PbS QDs via the thiol ligand TET-SH. Importantly, we demonstrate the increased thermal stability of the PbS/TET-SH system, compared to the traditional carboxylic acid counterpart, allowing for higher photoluminescence quantum yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c02031DOI Listing

Publication Analysis

Top Keywords

triplet energy
12
energy transfer
12
quantitative triplet
8
transfer pbs
8
quantum dots
8
thermal stability
8
transfer
6
thiol-anchored tips-tetracene
4
tips-tetracene ligands
4
ligands quantitative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!