The stability of biologically produced pharmaceuticals is the limiting factor to various applications, which can be improved by formulation in solid-state forms, mostly via lyophilization. Knowledge about the protein structure at the molecular level in the solid state and its transition upon rehydration is however scarce, and yet it most likely affects the physical and chemical stability of the biological drug. In this work, synchrotron small- and wide-angle X-ray scattering (SWAXS) are used to characterize the structure of a model protein, lysozyme, in the solid state and its structural transition upon rehydration to the liquid state. The results show that the protein undergoes distortion upon drying to adopt structures that can continuously fill the space to remove the protein-air interface that may be formed upon dehydration. Above a hydration threshold of 35 wt %, the native structure of the protein is recovered. The evolution of SWAXS peaks as a function of water content in a broad range of concentrations is discussed in relation to the structural changes in the protein. The findings presented here can be used for the design and optimization of solid-state formulations of proteins with improved stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482395 | PMC |
http://dx.doi.org/10.1021/acs.molpharmaceut.0c00351 | DOI Listing |
Phys Chem Chem Phys
January 2025
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Stomatology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.
Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Physical Science and Technology, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
Metal halides are widely applied in solid-state lighting (SSL), optoelectronic devices, information encryption, and near-infrared (NIR) detection due to their superior photoelectric properties and tunable emission. However, single-component phosphors that can be efficiently excited by light-emitting diode (LED) chips and cover both the visible (VIS) and NIR emission regions are still very rare. To address this issue, (TPA)ZnBr:Sn/Mn (TPA = [(CHCHCH)N]) phosphors were synthesized by using the solvent evaporation method.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System, Luoyang 471004, China.
A multi-band high-sensitivity microwave sensor is reported. The two resonance units are based on complementary square spiral resonators (CSSRs) and produce four measurement bands through parasitic resonances. The four frequency bands are 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!