The synthesis of CdSe/CdS core/shell nanoparticles was revisited with the help of a causal inference machine learning framework. The tadpole morphology with 1-2 tails was experimentally discovered. The causal inference model revealed the causality between the oleic acid (OA), octadecylphosphonic acid (ODPA) ligands, and the detailed tail shape of the tadpole morphology. Further, with the identified causality, a neural network was provided to predict and directly lead to the original experimental discovery of new tadpole-shaped structures. An entropy-driven nucleation theory was developed to understand both the ligand and temperature dependent experimental data and the causal inference from the machine learning framework. This work provided a vivid example of how the artificial intelligence technology, including machine learning, could benefit the materials science research for the discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c02115 | DOI Listing |
Plant Dis
January 2025
Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, China;
is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. is a member of this genus, causing sooty spot on kiwifruit worldwide. With the expansion of kiwifruit cultivation, the incidence of sooty spot has become severe in Fengxin County, Jiangxi Province, China.
View Article and Find Full Text PDFBMC Genomics
January 2025
Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.
Background: Avian mycoplasmas are small bacteria associated with several pathogenic conditions in many wild and poultry bird species. Extensive genomic data are available for many avian mycoplasmas, yet no comparative studies focusing on this group of mycoplasmas have been undertaken so far.
Results: Here, based on the comparison of forty avian mycoplasma genomes belonging to ten different species, we provide insightful information on the phylogeny, pan/core genome, energetic metabolism, and virulence of these avian pathogens.
J Cell Mol Med
January 2025
Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
This study aims to elucidate the potential genetic commonalities between metabolic syndrome (MetS) and rheumatic diseases through a disease interactome network, according to publicly available large-scale genome-wide association studies (GWAS). The analysis included linkage disequilibrium score regression analysis, cross trait meta-analysis and colocalisation analysis to identify common genetic overlap. Using modular partitioning, the network-based association between the two disease proteins in the protein-protein interaction set was divided and quantified.
View Article and Find Full Text PDFBMJ Open
January 2025
School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
Objective: To evaluate the relationship between infarct pattern, inferred stroke mechanism and risk of recurrence in patients with ischaemic stroke. The question is clinically relevant to optimise secondary stroke prevention investigations and treatment.
Design: We conducted a retrospective analysis of the dabigatran treatment of acute stroke II (DATAS II) trial (ClinicalTrials.
Gynecol Oncol
January 2025
Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK. Electronic address:
Objective: Vulvar squamous cell carcinoma (VSCC) can be either HPV-dependent (HPVd) or HPV-independent (HPVi). HPVd VSCC typically occurs in younger women, has a more favorable prognosis, and develops from high-grade squamous intraepithelial lesions (HSIL). HPVi VSCC predominantly affects older women and arises within areas of chronic inflammation, particularly lichen sclerosis (LS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!