Nanometer-thin carbon nanomembranes (CNMs) are promising candidates for efficient separation processes due to their thinness and intrinsic well-defined pore structure. This work used radioactive tracer molecules to characterize diffusion of [H]HO, [C]NaHCO, and [P]HPO through a -[1,1',4',1″]-terphenyl-4-thiol (TPT) CNM in aqueous solution. The experimental setup consisted of two microcompartments separated by a CNM-covered micropore. Tracers were added to one compartment and their time-dependent increase in the other compartment was monitored. Occurring concentration polarization and outgassing effects were fully considered using a newly developed mathematical model. Our findings are consistent with previous gas/vapor permeation measurements. The high sensitivity toward a small molecule flow rate enables quantification of diffusion through micron-sized CNMs in aqueous solution. Furthermore, the results allow unambiguous distinction between intact and defective membranes. Even for extremely small membrane areas, this method allows detailed insight into the transmembrane transport properties, which is crucial for the design of 2D-separation membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c01821DOI Listing

Publication Analysis

Top Keywords

aqueous solution
12
carbon nanomembranes
8
selective diffusion
4
diffusion carbon
4
nanomembranes aqueous
4
solution studied
4
studied radioactive
4
radioactive tracers
4
tracers nanometer-thin
4
nanometer-thin carbon
4

Similar Publications

Cadmium pollution in water is becoming increasingly serious. Thus, the effective removal of Cd(II) from water has garnered attention. Aluminum hydroxide-modified attapulgite (ATP-AC) was prepared from basic aluminum acetate through a coprecipitation method that could efficiently adsorb Cd(II) in aqueous solution.

View Article and Find Full Text PDF

Chitosan salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO) was synthesized by hydrothermal process and isolated via different drying processes, namely, air-drying (AD) and freeze-drying (FD). The physicochemical properties of freeze-dried CS-SL/CaO nanoparticle (CS-SL/CaO-FD) and air-dried CS-SL/CaO nanoparticle (CS-SL/CaO-AD) were compared. In particular, the adsorption properties reveal that the specific surface area of CS-SL/CaO-FD increased by ca.

View Article and Find Full Text PDF

A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.

View Article and Find Full Text PDF

Dual-compartment-gate organic transistors for monitoring biogenic amines from food.

Biosens Bioelectron

December 2024

Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.

According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.

View Article and Find Full Text PDF

The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!