Our quantum device is a solid-state array of semiconducting quantum dots that is addressed and read by 2D electronic spectroscopy. The experimental ultrafast dynamics of the device is well simulated by solving the time-dependent Schrödinger equation for a Hamiltonian that describes the lower electronically excited states of the dots and three laser pulses. The time evolution induced in the electronic states of the quantum device is used to emulate the quite different nonequilibrium vibrational dynamics of a linear triatomic molecule. We simulate the energy transfer between the two local oscillators and, in a more elaborate application, the expectation values of the quantum mechanical creation and annihilation operators of each local oscillator. The simulation uses the electronic coherences engineered in the device upon interaction with a specific sequence of ultrafast pulses. The algorithm uses the algebraic description of the dynamics of the physical problem and of the hardware.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c01880 | DOI Listing |
Chem Biomed Imaging
January 2025
College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China.
Studying embryogenesis is fundamental to understanding developmental biology and reproductive medicine. Its process requires precise spatiotemporal regulations in which lipid metabolism plays a crucial role. However, the spatial dynamics of lipid species at the subcellular level remains obscure due to technical limitations.
View Article and Find Full Text PDFLangmuir
January 2025
Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
Recent studies have shown that ATP at high physiological concentrations (>5 mM) can inhibit liquid-liquid phase separation (LLPS) driven by interactions between intrinsically disordered proteins (IDPs). However, the mechanism underlying such inhibitory effect still remains elusive. Here, we used all-atom molecular dynamics simulation to study the interaction of ATP with two typical IDPs (i.
View Article and Find Full Text PDFNat Commun
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Harmonic generation, a notable non-linear phenomenon, has promising applications in information processing. For spin-waves in ferromagnetic materials, great progress has been made in the generation higher harmonics, however probing the coherence of these higher harmonics is challenging. Here, using in-situ diamond sensors, we study the coherent harmonic generation of spin waves in a soft ferromagnet.
View Article and Find Full Text PDFNano Lett
January 2025
Electronic Information School, Wuhan University, Wuhan 430072, China.
Integrating metasurfaces on-chip offers a promising strategy for modulating and extracting guided waves, suggesting tremendous applications in compact wearable devices. However, despite the full acquisition of on-chip manipulation of optical parameters, including phase, amplitude, and polarization, the functionality of on-chip metasurfaces remains limited by the lack of wavelength selectivity. Here, an on-chip approach to differentiate wavelength components is proposed in the visible regime for wavelength division multiplexing (WDM).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India. Electronic address:
The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!