Engineering materials nanostructures is key for developing renewable energy technologies for lithium-ion batteries (LIBs) but remains a long-term research challenge. In this paper, heterostructured NiO/NiCoO nanoprisms with a hierarchically hollow cavity and porous framework are rationally designed and further encapsulated in graphene oxide (NiO/NiCoO@GO) as a highly efficient anode nanomaterial for LIBs. Heterostructured NiO/NiCoO hollow/porous nanoprisms are derived by the ionic exchange of Ni precursors with [Co(CN)] (CoNi-metal-organic framework (MOF)) and then annealed under air. The encapsulation is achieved by fast assembly of GO and NiO/NiCoO. Thanks to hierarchically hollow and porous nanostructure, heterostructured NiO/NiCoO, and overcoated GO, the NiO/NiCoO electrode shows excellent electrochemical performance toward lithium storage, disclosing a large rate capacity of 468 mA h g at 3.0 A g and a good capacity retention of 561 mA h g at 1 A g after 800 cycles. This work paves a facile ionic exchange method for the controllable construction of hierarchically hollow MOFs and their derived composite nanomaterials for various energy-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c00801 | DOI Listing |
Small
January 2025
College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China.
The development of diverse microstructures has substantially contributed to recent progress in high-performance electromagnetic wave (EMW) absorption materials, providing a versatile platform for the modulation of absorption properties. Exploring multidimensional microstructures and developing tailored and gentle strategies for their precise optimization can substantially address the current challenges posed by relatively unclear underlying mechanisms. Here, a series of 2D/1D heterogeneous NiO@PPy composites featuring hollow hierarchical microstructures are successfully synthesized using a straightforward strategy combining sacrificial templating with chemical oxidative polymerization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049 China. Electronic address:
Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER.
View Article and Find Full Text PDFSmall
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFEnviron Res
January 2025
Jiangxi Province Key Laboratory of Surface Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China; School of Materials and Energy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China. Electronic address:
One-dimensional (1D) hierarchical photocatalyst has the advantages of 1D materials and hierarchical materials, which is a kind of potential high performance photocatalytic materials. However, how to efficiently synthesize 1D hierarchical BiOBr is still a huge challenge. Herein, 1D rod-like BiO(OH)(NO)·3HO, the hydrolysis product of Bi(NO)·5HO, was acted as both the template and Bi source to synthesize 1D hierarchical hollow BiOBr (1DHHBr) through a facile solution stirring method at room temperature, using KBr as Br source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!