The short-range attractive forces between hydrophobic surfaces are key factors in a wide range of areas such as protein folding, lipid self-assembly, and particle-bubble interaction such as in industrial flotation. Little is certain about the effect of dissolved (well-controlled) gases on the interaction forces, in particular in those systems where the formation of surface nanobubble bridges is suppressed. Here, we probe the short-range attractive force between hydrophobized silica surfaces in aqueous solutions with varying but well-controlled isotherms of gas solubility. The first contact approach force measurement method using AFM shows that decreasing gas solubility results in a decrease of the force magnitude as well as shortening of its range. The behavior was found to be consistent across all four aqueous systems and gas solubilities tested. Using numerical computations, we corroborate that attractive force can be adequately explained by a multilayer dispersion force model, which accounts for an interfacial gas enrichment (IGE), that results in the formation of a dense gas layer (DGL) adjacent to the hydrophobic surface. We found that the DGL on the hydrophobic surface is affected only by the concentration of dissolved gases and is independent of the salt type, used to control the gas solubility, which excludes the effect of electrical double-layer interactions on the hydrophobic force.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c00117DOI Listing

Publication Analysis

Top Keywords

short-range attractive
12
attractive force
12
gas solubility
12
dissolved gases
8
hydrophobic surfaces
8
hydrophobic surface
8
force
7
gas
6
hydrophobic
5
gases short-range
4

Similar Publications

Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.

View Article and Find Full Text PDF

Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO colloidal motors and Janus spherical Pt/SiO colloidal motors.

View Article and Find Full Text PDF

Dynamical arrest for globular proteins with patchy attractions.

Soft Matter

January 2025

Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.

Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.

View Article and Find Full Text PDF

Owing to their synergistic interactions, dual-atom catalysts (DACs) with well-defined active sites are attracting increasing attention. However, more experimental research and theoretical investigations are needed to further construct explicit dual-atom sites and understand the synergy that facilitates multistep catalytic reactions. Herein, we precisely design a series of asymmetric selenium-based dual-atom catalysts that comprise heteronuclear SeN-MN (M = Fe, Mn, Co, Ni, Cu, Mo, etc.

View Article and Find Full Text PDF

Spin Glass Transition of Magnetic Ionic Liquids Induced by Self-Assembly.

Langmuir

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!