A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tailoring Pseudo-Zwitterionic Bifunctionalized Silica Nanoparticles: From Colloidal Stability to Biological Interactions. | LitMetric

Tailoring Pseudo-Zwitterionic Bifunctionalized Silica Nanoparticles: From Colloidal Stability to Biological Interactions.

Langmuir

Laboratório Nacional de Luz Sı́ncrotron (LNLS)/Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, CEP 13083-970 São Paulo, Brazil.

Published: September 2020

Zwitterionic molecules are known to resist nonspecific protein adsorption and have been proposed as an alternative to the widely used polyethylene glycol. Recently, zwitterionic-like nanoparticles were created from the coimmobilization of positive and negative ligands, resulting in surfaces that also prevent protein corona formation while keeping available sites for bioconjugation. However, it is unclear if they are able to keep their original properties when immersed in biological environments while retaining a toxicity-free profile, indispensable features before considering these structures for clinics. Herein, we obtained optimized zwitterionic-like silica nanoparticles from the functionalization with varying ratios of THPMP and DETAPTMS organosilanes and investigated their behavior in realistic biological milieu. The generated zwitterionic-like particle was able to resist single-protein adsorption, while the interaction with a myriad of serum proteins led to significant loss of colloidal stability. Moreover, the zwitterionic particles presented poor hemocompatibility, causing considerable disruption of red blood cells. Our findings suggest that the exposure of ionic groups allows these structures to directly engage with the environment and that electrostatic neutrality is not enough to grant low-fouling and stealth properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c01545DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
8
colloidal stability
8
tailoring pseudo-zwitterionic
4
pseudo-zwitterionic bifunctionalized
4
bifunctionalized silica
4
nanoparticles colloidal
4
stability biological
4
biological interactions
4
interactions zwitterionic
4
zwitterionic molecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!