Reducing friction and wear in a convenient and economical way has always been desired for industrial production. Here, a carbon-based film with excellent friction-reducing and antiwear abilities was formed in situ from the degradation of poly-α-olefin oil (PAO10) on the friction interfaces of the MoN/Pt coating sliding against the SiN ceramic ball during the rubbing process. The MoN/Pt coating was prepared on stainless steel by direct current magnetron sputtering, in which an active 10 nm Pt layer grew well on the MoN layer. The MoN/Pt coating, lubricated by trace amounts of 5 mL PAO10 oil, exhibited a super low friction coefficient of 0.042 and an extremely low wear rate of 1.08 × 10 mm (N m) after a long duration of applied friction under a high Hertz contact stress of 1.7 GPa. Raman spectra and transmission electron microscopy images revealed that the carbon-based film was composed of amorphous carbon phase dotted with sporadic Pt, MoO, and SiO crystal phases. Molecular dynamics simulations illustrated that the MoN/Pt coating had catalytic action and resulted in the degradation of PAO10 during the rubbing process, which corresponded to the formation of the amorphous carbon-based film on the wear surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c01896DOI Listing

Publication Analysis

Top Keywords

carbon-based film
16
mon/pt coating
16
degradation poly-α-olefin
8
poly-α-olefin oil
8
reducing friction
8
friction wear
8
rubbing process
8
friction
5
situ synthesizing
4
carbon-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!