Metalla-aromatics have attracted considerable attention due to their fascinating structural and reactive properties as well as their potential as prospective functional materials. Metallabenzenes and their fused-ring counterparts are significant members of metalla-aromatics, while their crystal structures often display seemly counterintuitive nonplanar geometry. The geometric bending of metallabenzenes has been attributed to the unfavorable antibonding interactions in the σ-space orbitals rather than the general opinion regarding the π-space orbitals of an aromatic compound. However, the origin of the geometric bending in fused-ring metallabenzenes remains elusive. In this work, we elucidated that such a "σ-control mechanism" still holds for fused-ring metallabenzenes by performing systematic calculations for a plethora of metallabenzenes and fused-ring metallabenzenes. Furthermore, we found that a more bent geometry can be achieved for fused-ring metallabenzenes than their corresponding metallabenzenes by fusing the aromatic rings at the ortho-position of a metal center to induce extra repulsion. The more significant bending in fused-ring metallabenzenes also favors the aromaticity enhancement. These findings not only provide mechanistic insight into the unexpected geometric distortion in both metallabenzenes and fused-ring metallabenzenes but also pave the way to design and develop bent metalla-aromatics with enhanced metalla-aromaticity, which hold great potential as aromatic functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.0c05332 | DOI Listing |
Nat Commun
May 2024
Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
Carbolong complexes are one of the primary types of metallaaromatics, and they include metallapentalynes and metallapentalenes. A series of 7C-10C and 12C-carbolong complexes with planar ligand skeletons respectively containing 7-10 and 12 carbon atoms in their backbones, have been previously reported. Herein, two classes of strained substances, metallabenzyne-fused metallapentalenes and metallabenzene-fused metallapentalynes, were prepared, both representing 11C-carbolong complexes with a planar carbon-chain ligand.
View Article and Find Full Text PDFACS Omega
April 2021
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, 8370146 Santiago Chile.
In the current work, some metallabenzenes with one and several fused rings were analyzed in terms of their electronic delocalization. These fused-ring metallabenzenes are known as metallabenzenoids, and their aromatic character is not free of controversy. The systems of the current work were designed from crystallographic data of some synthesized molecules, and their electronic delocalization (aromaticity) was computationally examined in terms of the molecular orbital analysis (Hückel's rule), the induced magnetic field, and ring currents.
View Article and Find Full Text PDFJ Phys Chem A
September 2020
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
Metalla-aromatics have attracted considerable attention due to their fascinating structural and reactive properties as well as their potential as prospective functional materials. Metallabenzenes and their fused-ring counterparts are significant members of metalla-aromatics, while their crystal structures often display seemly counterintuitive nonplanar geometry. The geometric bending of metallabenzenes has been attributed to the unfavorable antibonding interactions in the σ-space orbitals rather than the general opinion regarding the π-space orbitals of an aromatic compound.
View Article and Find Full Text PDFChem Sci
December 2019
Key Laboratory of Pesticide and Chemical Biology , Ministry of Education , College of Chemistry , Central China Normal University, Wuhan 430079 , P. R. China . Email: ; Email:
Metalla-analogues of polycyclic aromatic hydrocarbons (PAHs) have captivated chemists with their fascinating structures and unique electronic properties. To date, metallabenzene, metallanaphthalene and metallaanthracene have been reported. Metalla-analogues with more complicated fused rings have rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!