Stereochemistry of Transition Metal Complexes Controlled by the Metallo-Anomeric Effect.

J Am Chem Soc

Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.

Published: September 2020

The use of stereoelectronic interactions to control reactivity and selectivity has a long history in chemistry. The anomeric effect, one of the fundamental concepts in organic chemistry, describes the preferences of a substituent at the anomeric carbon in glycosides to adopt axial configuration when the anomeric group is an electronegative element such as oxygen or a halogen. The origin of the anomeric effect has been the subject of intense debate. Explanations capitalizing on either the delocalization of the endocyclic oxygen lone pair into the antibonding σ* orbital or the minimization of the dipole-dipole interactions are currently the two leading theoretical models. Although the majority of experimental and theoretical studies have focused on the elements from groups 6 and 7, little is known about conformational preferences of tetrahydropyran rings substituted with a transition metal at the anomeric carbon and the role of these interactions in stereoselective synthesis. Here, we report studies on conformational and configurational preferences of organometallic complexes stabilized by vicinal heteroatoms. We provide computational evidence that late transition metals adopt the axial position in heterocycles or synclinal geometry in acyclic systems. Furthermore, the anomeric preferences of late transition metals correlate with the oxidation state of the metal and can be explained by hyperconjugative interactions between endocyclic heteroatom and the σ* acceptor orbitals of the C-M bond. In a broader context, this discovery provides insight into the role of previously unanticipated stereoelectronic effects that can be harnessed in the design of stereoselective reactions, including chemical glycosylation and enantioselective catalysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622273PMC
http://dx.doi.org/10.1021/jacs.0c06882DOI Listing

Publication Analysis

Top Keywords

transition metal
8
anomeric carbon
8
adopt axial
8
late transition
8
transition metals
8
anomeric
6
stereochemistry transition
4
metal complexes
4
complexes controlled
4
controlled metallo-anomeric
4

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.

Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!