Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biotransformation of selenite to valuable elemental selenium nanoparticles (Se) is a promising avenue to remediate seleniferous environments and simultaneously recover selenium (Se). However, the underlying oxyanion competition and selenite transformation mechanism in prokaryotes are poorly understood. In this work, the impacts of phosphate on selenite uptake and transformation were elucidated with and its mutant deficient in phosphate transport as model microbial strains. Selenite uptake was inhibited by phosphate in . Moreover, the transformation of internalized Se was shifted from Se to toxic organo-Se with elevated phosphate levels, as evidenced by the linear combination fit analysis of the Se K-edge X-ray absorption near-edge structure. Such a phosphate-regulated selenite biotransformation process was mainly assigned to the competitive uptake of phosphate and selenite, which was primarily mediated by a low affinity phosphate transporter (PitA). Under phosphate-deficient conditions, the cells not only produced abundant Se nanoparticles but also maintained good cell viability. These findings provide new insights into the phosphate-regulated selenite biotransformation by prokaryotes and contribute to the development of new processes for bioremediating Se-contaminated environments, as well as bioassembly of Se.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c02175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!